Question

A frictionless piston-cylinder device is filled with helium gas at 300 kPa and 40 °C. A...

A frictionless piston-cylinder device is filled with helium gas at 300 kPa and 40 °C. A thermal reservoir at 95 °C is used to heat the gas at constant pressure to a final temperature of 75 °C.

a) Determine the change in entropy per unit mass for the gas during this process. Prove your answers to

b) and c) below quantitatively using entropy concepts or briefly describe why you’re unable to evaluate.

b) Is this process internally reversible, irreversible, impossible, or you’re unable to evaluate?

c) Is this process externally reversible, irreversible, impossible, or you’re unable to evaluate?

Homework Answers

Answer #1

b) Is this process internally reversible, irreversible, impossible, or you’re unable to evaluate?

Ans: The Process is Internally Reversible because there is no source of entropy generation within the system.

c) Is this process externally reversible, irreversible, impossible, or you’re unable to evaluate?

Ans: The process is externally Irreversible because there is heat transfer between reserviour and system (helium gas). Heat trasnfer with finite temperature difference generate entropy

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1-kg water in a frictionless piston-cylinder device is initially at 250°C and 300 kPa (state 1)....
1-kg water in a frictionless piston-cylinder device is initially at 250°C and 300 kPa (state 1). A total of 700 kJ of work is done ON the water in order to isothermally reduce its volume to 1/20 of its initial volume (state 2). Determine the magnitude and direction of the heat transfer involved in this process. Answer: -1147 kJ.
A mass of one kg of water within a piston–cylinder assembly undergoes a constant-pressure process from...
A mass of one kg of water within a piston–cylinder assembly undergoes a constant-pressure process from saturated vapor at 500 kPa to a temperature of 260°C. Kinetic and potential energy effects are negligible. For the water: a) Evaluate the work, in kJ, b) If the work is 30 kJ, evaluate the heat transfer, in kJ, c) If the heat transfer is negligible, evaluate the entropy production in kJ/K d) Determine if the process is reversible, irreversible, or impossible.
Air in a closed piston cylinder device is initially at 800 K and at 250 kPa....
Air in a closed piston cylinder device is initially at 800 K and at 250 kPa. The air undergoes a process until it is at 2200 K and at 750 kPa. What is the change in the air's specific entropy during this process (kJ/kgK)?
A vertical, insulated piston cylinder is filled with saturated liquid H2O at 50 kPa. A stirrer...
A vertical, insulated piston cylinder is filled with saturated liquid H2O at 50 kPa. A stirrer moves rapidly inside the cylinder until 22% of the H2O (by mass) evaporates. Determine the net work done (in kJ/kg), the change in entropy during this process (in kJ/kg-K) and the entropy generated during this process (in kJ/kg-K).
A frictionless piston-cylinder device and a rigid tank contain 3.3 kg of neon gas at the...
A frictionless piston-cylinder device and a rigid tank contain 3.3 kg of neon gas at the same temperature, pressure and volume. Now heat is transferred, and the temperature of both systems is increased by 10 degrees C. The amount of extra heat that must be supplied to neon gas in the cylinder that is maintained at constant pressure is ...
H3.3 A frictionless piston-cylinder device contains 2 kg of H2O initially at T1 = 300◦C and...
H3.3 A frictionless piston-cylinder device contains 2 kg of H2O initially at T1 = 300◦C and p1 = 5 bar. The device is cooled at constant pressure until the volume is ∀2 = 0.5 m3 . Assume a quasiequillibrium process which occurs slowly with no acceleration as the piston moves. Kinetic and potential energy effects are negligible. Determine: a. work [kJ] during process (indicate magnitude and direction) b. heat transfer [kJ] during process (indicate magnitude and direction)
An insulated piston–cylinder device initially contains 20 L of air at 140 kPa and 27 °C....
An insulated piston–cylinder device initially contains 20 L of air at 140 kPa and 27 °C. Air is now heated for 10 min by a 100-W resistance heater placed inside the cylinder. The pressure of air is maintained constant during this process, and the surroundings are at 27 °C and 100 kPa. Determine the exergy destroyed during this process.
A piston-cylinder device contains 3.2 kg of air at 400 kPa and 10°C. Heat is transfered...
A piston-cylinder device contains 3.2 kg of air at 400 kPa and 10°C. Heat is transfered to air and the piston is allowed to expand at constant pressure until its temperature reaches 50°C. The work done during this expansion process is: Use kj units
A piston cylinder device contains 5 kg of Refrigerant 134a at 800 kPa and 70 C....
A piston cylinder device contains 5 kg of Refrigerant 134a at 800 kPa and 70 C. The refrigerant is now cooled at constant pressure until it reaches a saturated vapor state. How much heat was lost in the process? Express your result in kJ and you may ignore the negative sign.
A piston-cylinder device initially contains 75 g of saturated water vapor at 340 kPa . A...
A piston-cylinder device initially contains 75 g of saturated water vapor at 340 kPa . A resistance heater is operated within the cylinder with a current of 0.6 A from a 300 V source until the volume doubles. At the same time a heat loss of 7 kJ occurs. Part A)Determine the final temperature (T2). Part B)Determine the duration of the process. Part C) What-if scenario: What is the final temperature if the piston-cylinder device initially contains saturated liquid water?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT