Question

A simply supported composite beam (L = 4.5 m) is subjected to a positive bending moment...

A simply supported composite beam (L = 4.5 m) is subjected to a positive bending moment (680 N- m) at both ends. The beam is made of two materials in a square cross-section. Material 1 is 50x50 mm and is surrounded by a 25 mm shell of material 2. Solve for the maximum stress in each material. E1 = 100 GPa, E2 = 200 GPa.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A simply supported composite beam (L = 4.5 m) is subjected to a positive bending moment...
A simply supported composite beam (L = 4.5 m) is subjected to a positive bending moment (680 N- m) at both ends. The beam is made of two materials in a square cross-section. Material 1 is 50x50 mm and is surrounded by a 25 mm shell of material 2. Solve for the maximum stress in each material. E1 = 100 GPa, E2 = 200 GPa.
A simply supported composite beam (L = 4.5 m) is subjected to a positive bending moment...
A simply supported composite beam (L = 4.5 m) is subjected to a positive bending moment (680 N-m) at both ends. The beam is made of two materials in a square cross-section. Material 1 is 50x50 mm and is surrounded by a 25 mm shell of material 2. Solve for the maximum stress in each material. E1 = 100 GPa, E2 = 200 GPa.
A simply supported laminated composite beam of length 0.075 m and width 5 mm made of...
A simply supported laminated composite beam of length 0.075 m and width 5 mm made of glass/epoxy has the following layup of [30/-30]4. Assume that each ply is 0.125 mm and material properties are E1 = 38.6 GPa, E2 = 8.27 GPa, G12 = 4.14 GPa, ν12 = 0.26. A uniform load of q=0.6 KN/m is applied on the beam. What is the maximum deflection of the beam?
a simply supported beam having a span length equivalent to 2008(mm). the beam is carrying uniform...
a simply supported beam having a span length equivalent to 2008(mm). the beam is carrying uniform distributed load having intensity of 08(N/mm) that span from the origin to two third of the entire span, together with concentrated load of 50N at the mid=span of the beam. the beam cross-section details are; -beam type = inverted tee flange beam - flange lenght = 008mm flange thickness= 20mm web height = 171mm web thickness= 20mm Answer the following question a) sketch the...
Plot the shear force and bending moment digrams for an 8m long beam simply supported at...
Plot the shear force and bending moment digrams for an 8m long beam simply supported at 0m and 6m. There is a distributed load of 10 KN/m between the two supports and there is a point load of 20kN located at the end of the beam.
True false: 1) When subjected to bending, a beam only develops normal stress in tension and...
True false: 1) When subjected to bending, a beam only develops normal stress in tension and compression 2)the shear flow is defined as an average force per unit length for each cross-section. 3)due to bending shear flow develops only along the beam length. 4)) shear center is defined as the point through which force can be applied without causing torsion Fill in the blank: the shear stress induced by bending in a beam is ............ Solve the question problem: A...
A beam of square cross section, 10 x 10 cm and length 5 m has a...
A beam of square cross section, 10 x 10 cm and length 5 m has a Young’s modulus of 200 GPa and density 7800 kg/m3. For a case of simply supported ends determine the first three natural frequencies and correspondent modes shapes.
Determine the largest allowable bending moment for a rectangular reinforced concrete beam having the width b...
Determine the largest allowable bending moment for a rectangular reinforced concrete beam having the width b = 200 mm, total height h = 375 mm and the distance from the bottom surface of the beam to the centre line of steel bars = 75 mm. Use the total area of steel As = 1360 mm2, modulus of elasticity of concrete = 30 GPa, modulus of elasticity of steel = 210 GPa, allowable compressive stress for concrete = 15 MPa and...
A simply supported reinforced-concrete beam has to resist a maximum factored moment of M* = 210...
A simply supported reinforced-concrete beam has to resist a maximum factored moment of M* = 210 KN-m. Given that f’c = 32 MPa, fy = 500 MPa and that the maximum possible width for the beam is 240 mm: a. Establish an appropriate structural depth ‘d’ for the beam b. Determine the total depth ‘D’ of the beam for a FRL of 90 minutes c. Find the area of steel Ast required to resist the moment and select the rebars....
A reinforced concrete beam is constructed with Grade 30 concrete which has a cross section of...
A reinforced concrete beam is constructed with Grade 30 concrete which has a cross section of 450 mm x 660 mm (b = 450 mm and D = 660 mm). The length of the beam is 5 m. The elastic modulus of the concrete is 32.8 GPa. A uniformly distributed live load of 23 kN/m is acting on the beam. Determine (a) the design bending moment on this beam for strength limit state, (b) modular ratio assuming Es = 200...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT