Question

An industrial ice-maker is a freezer system that continuously produces ice from water. A design is...

An industrial ice-maker is a freezer system that continuously produces ice from water. A design is required is to take in each hour, 350 kg of water at 18°C and produce ice at -6°C. Determine the amount of heat required to be removed to perform this function and the power required by the system.

Homework Answers

Answer #1

power required is depends upon the system of refrigeration used in the industry to freez it.VCRS or VARS can required different power required. Thus we can't not calculate power required without knowing the system of refrigeration.

I have explained throuly from basics hope you will understand easily please upvote it your positive reviews are motivates us. Thank you

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
500g of water at temperature of 15°C is placed in a freezer. The freezer has a...
500g of water at temperature of 15°C is placed in a freezer. The freezer has a power rating of 100W and is 80% efficient. 1- Calculate the energy required to convert the water into ice at a temperature of -20°C. 2- How much energy is removed every second from the air in the freezer? 3- How long will it take the water to reach a temperature of -20°C? 4- Explain the process that cools the air in the freezer. 5-...
A freezer has a coefficient of performance of 2.60. The freezer is to convert 1.86 kg...
A freezer has a coefficient of performance of 2.60. The freezer is to convert 1.86 kg of water at 26.0 ∘C to 1.86 kg of ice at -5.00 ∘C in 1 hour. a) What amount of heat must be removed from the water at 26.0 ∘C to convert it to ice at -5.00 ∘C ? b) How much electrical energy is consumed by the freezer during this hour? c) How much wasted heat is rejected to the room in which...
The ice maker inside a refrigerator makes ice cubes at 0.0°C from water that is at...
The ice maker inside a refrigerator makes ice cubes at 0.0°C from water that is at 13.2°C when it first enters the ice maker. If this machine is rated at 224 W and has a 3.56 coefficient of performance, what is the maximum amount of ice it can produce in a 24 hourperiod without any interruption or stoppage? Assume that the ice maker works just like a refrigerator. The specific heat of water is 4184 J/(kg · °C), and the...
1. You need design a freezer that will keep the temperature inside a -5.0 C and...
1. You need design a freezer that will keep the temperature inside a -5.0 C and will operate with a temperature inside at 5.0 C and will operate in a room with a temperature of 22.0 C. The freezer is to make 20.0 kg of ice at 0.0 C starting with water at 20.0 C. For water, the specific heat is 4190 J/kg-K, the heat of fusion is 333 kj/kg. a. How much energy must be removed from the water...
Your freezer has a COP of 3.64 . You put 1.57 kg of  18.0 C water into...
Your freezer has a COP of 3.64 . You put 1.57 kg of  18.0 C water into the freezer, and one hour later you have -6.50 C ice. Part A: How much heat does the freezer remove from the water during this time? Part B: Use the COP to determine the amount of electrical energy needed to freeze the water. Part C: How much heat goes into your kitchen from the freezer during this process?
1. An ice cube weighing 18g is removed from a freezer, where it has been at...
1. An ice cube weighing 18g is removed from a freezer, where it has been at -20oC. a. How much heat is required to warm it to 0oC without melting it? b. How much additional heat is required to melt it to liquid water at 0 oC? c. Suppose the ice cube was placed initially in a 180 g sample of liquid water at +20 oC in an insulated (thermally isolated) container. Describe the final state when the system has...
Q8 a) Define (i) Specific Heat Capacity, (ii) Specific Latent Heat. b) 500g of water at...
Q8 a) Define (i) Specific Heat Capacity, (ii) Specific Latent Heat. b) 500g of water at temperature of 15°C is placed in a freezer. The freezer has a power rating of 100W and is 80% efficient. (i) Calculate the energy required to convert the water into ice at a temperature of -20°C. (ii) How much energy is removed every second from the air in the freezer? (iii) How long will it take the water to reach a temperature of -20°C?...
(d) In a closed industrial process 2 .5 kg of water at an initial temperature of...
(d) In a closed industrial process 2 .5 kg of water at an initial temperature of 15°C is continually stirred whilst being heated. If the net heat transferred to the system is 3 kJ and the final temperature of the water is 75°C, determine: i.The internal energy change of the water ii.The work transferred (stating the direction-in or out)of the mechanical stirrer. iii.The additional heat flow required for the same temperature increase if there were no work transfer. For parts...
A 0.4-L glass of water at 20°C is to be cooled with ice to 5°C. The...
A 0.4-L glass of water at 20°C is to be cooled with ice to 5°C. The density of water is 1 kg/L, and the specific heat of water at room temperature is c = 4.18 kJ/kg·°C. The specific heat of ice at about 0°C is c = 2.11 kJ/kg·°C. The melting temperature and the heat of fusion of ice at 1 atm are 0°C and 333.7 kJ/kg. A) Determine how much ice needs to be added to the water, in...
Design a 24V standalone DC PV system to power a clinic with DC fridge/freezer combination to...
Design a 24V standalone DC PV system to power a clinic with DC fridge/freezer combination to store vaccines in addition to light, test equipment with three days of storage. The maximum daily demand of 1000 Wh occurs during summer. Assume the peak sun hour is 5.0. The available NABRA modules have VOC =21.7V, ISC= 6.5A, VMP=17.4V, and IMP = 5.8A at STC. The module de-rating factor is 0.85, wire efficiency is 0.95 and battery charge efficiency is 0.85. Use the...