Question

For a vibrating system, m = 10 kg, k = 2500 N/m, and c = 45...

For a vibrating system, m = 10 kg, k = 2500 N/m, and c = 45 N*s/m. A harmonic force of amplitude 180 N and frequency 3.5 Hz acts on the mass. If the initial displacement and velocity of the mass are 15 mm and 5 m/s, respectively, find the complete solution representing the motion of the mass.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a system with a vibrating base. The spring constant is given as K = 10.kN/m...
Consider a system with a vibrating base. The spring constant is given as K = 10.kN/m and the mass is also given as M = 200.Kg. If the amplitude of the base is 0.5mm, then what should the damping constant c be for the amplitude of the transmitted force to be equal to 2500.N at resonance.
#1: A mass of 6 kg is attached to a spring with k = 1500 N/m....
#1: A mass of 6 kg is attached to a spring with k = 1500 N/m. It is stretched a distance of 0.5 m and is released so that it oscillates in simple harmonic motion. A) What is the frequency? B) What is the energy of the oscillator? C) What is the maximum velocity for the oscillator? #2:  When at x = 0.3 m a simple harmonic oscillator (k = 2000 N/m and m = 2 kg) has a velocity of...
Spring system, mass and dampers with k = 4000 N / m, m = 10 kg...
Spring system, mass and dampers with k = 4000 N / m, m = 10 kg and c = 40 Ns / m get a harmonic excitation force F (t) = 200 sin 16t N with initial conditions x0 = 0.05 m and ?̇0 = 10 m / s. Look for it, a. Response x due to initial conditions (free vibration) b. Response x due to excitation force (forced vibration) c. The magnitude of the total xtot response (in m...
A block of mass 2.5 kg is connected to a spring with k=1250 N/m. (a) At...
A block of mass 2.5 kg is connected to a spring with k=1250 N/m. (a) At t = 0 the block is released from rest at x(t = 0) = 28 mm from equilibrium. The motion is linearly damped with b = 50 kg/s. Find the amplitude A and phase angle ?. (Note that the amplitude is not obviously the displacement at t = 0 as it would be for the undamped case!) (b) Now consider a driving force with...
Spring system, mass and dampers with k = 4000 N / m, m = 10 kg...
Spring system, mass and dampers with k = 4000 N / m, m = 10 kg and c = 40 Ns / m get a harmonic excitation force F (t) = 200 sin 16t N with initial conditions x0 = 0.05 m and a. Response x due to initial conditions (free vibration) b. Response x due to excitation force (forced vibration) c. The magnitude of the total xtot response (in m or mm) at t = 2.5 seconds
T93 There is a vibrating mass-spring system supported on a frictionless surface and a second equal...
T93 There is a vibrating mass-spring system supported on a frictionless surface and a second equal mass that is moving toward the vibrating mass with velocity v. the motion of the vibrating mass is given by x = Acosωt (where x is the displacement of the mass from its equilibrium position in m, A is the amplitude of 0.1 m, and ω is the angular frequency of 40 rad/s). The two masses collide elastically just as the vibrating mass passes...
A mass m is attached to a spring with stiffness k=25 N/m. The mass is stretched...
A mass m is attached to a spring with stiffness k=25 N/m. The mass is stretched 1 m to the left of the equilibrium point then released with initial velocity 0. Assume that m = 3 kg, the damping force is negligible, and there is no external force. Find the position of the mass at any time along with the frequency, amplitude, and phase angle of the motion. Suppose that the spring is immersed in a fluid with damping constant...
An oscillator consists of a block attached to a spring (k = 125 N/m). At some...
An oscillator consists of a block attached to a spring (k = 125 N/m). At some time t, the position (measured from the system's equilibrium location), velocity, and acceleration of the block are x = 0.700 m, v = −12.0 m/s, and a = −128 m/s2. (a) Calculate the frequency of oscillation. Incorrect: Your answer is incorrect. Hz (b) Calculate the mass of the block. kg (c) Calculate the amplitude of the motion. m
A mass of 1.79 kg is placed on a spring with spring constant of 280 N/m....
A mass of 1.79 kg is placed on a spring with spring constant of 280 N/m. After being pulled to its positive amplitude position and released, the resulting simple harmonic motion has a maximum velocity of 1.126 m/s. (a) Calculate the angular frequency of the oscillation.   rad/s (b) Calculate the minimum time elapsed for the mass to reach the 0.044 m position (distance from the equilibrium position).    s (c) Calculate the velocity of the mass at the time found in part (b).    m/s
A 6.5-kg mass is attached to an ideal 750-N/m spring. If the system undergoes simple harmonic...
A 6.5-kg mass is attached to an ideal 750-N/m spring. If the system undergoes simple harmonic motion, what are the frequency, angular frequency, and period of the motion? The frequency, f = The angular frequency, ω = The period, T =   If the total mechanical energy of the system is 72 J, what are the amplitude, maximum speed and maximum acceleration of the motion? The amplitude, A =   The maximum speed, vmax = The maximum acceleration, amax =
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT