Question

An aircraft flies with a Mach number Ma1=0.921 at an altitude of 7021 m where the...

An aircraft flies with a Mach number Ma1=0.921 at an altitude of 7021 m where the pressure is 42.1 kPa and the temperature is 242.1 K. Calculate the stagnation properties (static temperature, pressure, density), cross-section areas A1 and A2=? at the inlet and outlet of the diffuser. The diffuser at the engine inlet has an exit Mach number of Ma2=0.3. For a mass flow rate of 32.1 kg/s, determine the static pressure rise across the diffuser and the exit area.

Solve the problem by making the necessary assumptions and drawing the schematic figure.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.      Air enters a converging-diverging nozzle with a total pressure of 1100 kPa and a total...
1.      Air enters a converging-diverging nozzle with a total pressure of 1100 kPa and a total temperature of 127°C. The exit area to throat area ratio is 1.8. The throat area is 5 cm2. The velocity at the throat is sonic and the diverging section acts as a nozzle. The diverging section is now acts as a supersonic nozzle. Assume that a normal shock stands in the exit plane of the nozzle. Determine the following: a.       The static pressure and...
A turbojet aircraft flies at 575 mph at an altitude of 16,500 ft, where Pa =...
A turbojet aircraft flies at 575 mph at an altitude of 16,500 ft, where Pa = 8.7 psia and Ta = 460 R. The compressor pressure ratio is 8, and the maximum temperature at the combustion chamber is 1840 degrees Farenheight. Assuming ideal performance of the various components of the engine, determine the compressor-work input, the pressure and temperatures throughout the cycle, and the exit-jet velocity.
In the compressor side of a turbocharger, the radial component of the velocity at the exit...
In the compressor side of a turbocharger, the radial component of the velocity at the exit of a radial vaned impeller is 28 m/s and the slip factor is 0.9. The impeller tip speed is 350 m/s. The impeller area is 0.08 m2 and the total-to-total efficiency is 90%. Stagnation pressure and temperature at the inlet of the compressor are 1 bar and 288 K. In the turbine side, the gases (with stagnation conditions of 390 kPa and 1150 K)...
As a propulsion engineer, you are tasked with testing the turbojet engine of an aircraft to...
As a propulsion engineer, you are tasked with testing the turbojet engine of an aircraft to determine its performance characteristics.  The turbojet engine is analyzed on an air-standard basis based on the Brayton cycle. Air, with a velocity of 265 m/s and volumetric flow rate of 230 m3/s, enters the diffuser at 18 kPa, -57oC, and exits at 30 kPa.  The compressor pressure ratio is 15 to 1. The maximum temperature exiting the combustor is 1087oC. The pressure exiting the nozzle is...
A turbojet aircraft is flying with a velocity of 320 m/s at a certain altitude, where...
A turbojet aircraft is flying with a velocity of 320 m/s at a certain altitude, where the ambient conditions are 32 kPa and -32°C. The pressure ratio across the compressor is 12, and the temperature at the turbine inlet is 1400K. Air enters the compressor at a rate of 40 kg/s, and the and the jet fuel has a heating value of 42700 kJ/kg. Assuming ideal operations for all components and constant specific heats for air at room temperature, (Cp=1.005...
A turbojet engine is fitted to an aircraft flying at M = 0.85 in conditions where...
A turbojet engine is fitted to an aircraft flying at M = 0.85 in conditions where the ambient temperature is 216 K and the ambient pressure is 18.75 kPa. You are to assume adiabatic flow and isentropic conditions. The following data on the engine are known: Compressor pressure ratio ?? = 12 Combustion chamber efficiency ?? = 1 Turbine Inlet temperature ?4 = 1796 ? Calculate: a) The total temperature and pressure at entry to the compressor. (6 Marks) b)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT