Question

We have air in the piston that is undergoes 2 process in series. in the first...

We have air in the piston that is undergoes 2 process in series.

in the first step. the air is compressed such a way that the process is described a polytropic where PVn = constant . The initial state of air is 100Kpa. 0.04m3/kg. the final specific volume at the end of first process is 0.02m3/kg. n= 1.3

in the second step. the air is subject to constant pressure process where the final specific volume is equal to the initial state  

a) sketch the process on a P-v diagram and label the state 1,2,3 ?

b) determine the specific work (work per unit mass of air ) for each step and overall process ?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a cylinder/piston arrangement, air is compressed in a reversible polytropic process to a final state...
In a cylinder/piston arrangement, air is compressed in a reversible polytropic process to a final state of 800 kPa, 500 K. Initially air is at 110 kPa and 25oC. During the compression process heat transfer takes place with the ambient maintained at 25oC. Assume air as an ideal gas (R =0.287 kJ/kg) and has constant specific heats of Cp = 1.004 kJ/kgK and Cv = 0.717 kJ/kgK. If the mass of air in the cylinder is 0.1286 kg, determine a)...
0.5 kilograms of air are compressed from 100 kPa and 300 K in a polytropic process,...
0.5 kilograms of air are compressed from 100 kPa and 300 K in a polytropic process, n = 1.3, to a state where V2 = 0.5 V1. The air is further compressed at constant pressure until the final volume is 0.2 V1 . Draw a sketch of the processes on a p-V diagram. Determine the work for each process.
A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100...
A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100 kPa pressure. The gas is now compressed to a final temperature of 95oC at 250 kPa. This compression is polytropic and follows PVn=constant. a. Determine how much boundary work was added to the gas [in kJ] b. How much heat was added or removed from this system during this process? [in kJ]
A piston-cylinder assembly containing 3 kg of an ideal gas undergoes a constant pressure process from...
A piston-cylinder assembly containing 3 kg of an ideal gas undergoes a constant pressure process from an initial volume of 48 m3 to a final volume of 30 m3 . During the process, the piston supplies 1.2 MJ of work to the gas. The gas has a constant specific heat at constant volume of 1.80 kJ/(kg∙K) and a specific gas constant of 1.48 kJ/(kg∙K). Neglect potential and kinetic energy changes. a. Determine the initial specific volume of the gas in...
One kg of water in a piston-cylinder assembly undergoes two processes in series from an initial...
One kg of water in a piston-cylinder assembly undergoes two processes in series from an initial state where p1 = 0.8 MPa, T1 = 500°C: Process 1-2: Constant-pressure compression until the volume is half of the initial volume. Process 2-3: Constant-volume cooling until the pressure drops to 400 kPa. Sketch the two processes in series on a p-v and T-v diagram. Determine the work and heat transfer for both processes.
A piston cylinder device contains 0.15 kg of air initially at 2 MPa and 350 C....
A piston cylinder device contains 0.15 kg of air initially at 2 MPa and 350 C. First, the air expands isothermally to a pressure of 500 kPa. Then, it is compressed polytropically back to the initial pressure (2 MPa) with a polytropic exponent of 1.2. Find the work performed or introduced by or to the air for each process. Express it both times in kJ.
Carbon dioxide (CO2) gas in a piston-cylinder assembly undergoes three processes in series that begin and...
Carbon dioxide (CO2) gas in a piston-cylinder assembly undergoes three processes in series that begin and end at the same state (a cycle). Process 1–2: Expansion from state 1 where p1 = 10 bar, V1 = 1 m3, to state 2 where V2 = 4 m3. During the process, pressure and volume are related by pV1.5 = constant. Process 2–3: Constant volume heating to state 3 where p3 = 10 bar. Process 3–1: Constant pressure compression to state 1. Sketch...
Air was compressed (polytropic process) from p1= 100kPa and T1= 293Kto p2= 0.3MPa and v2=0.2803m3/kg. The...
Air was compressed (polytropic process) from p1= 100kPa and T1= 293Kto p2= 0.3MPa and v2=0.2803m3/kg. The isentropic exponent of the gas and specific gas constant are 1.4 and 287 J/(kgK), respectively. Determine (a) polytropic exponent, (b) heat and work of this process, (c) change of internal energy, (d) change of entropy of air,if mass of air is 2kgand air can be treated as ideal gas.Additionally,(e) draw the process on the p-v and T-s diagrams.You can round temperature to one decimal...
Air is contained in a rigid, well-insulated container of volume 3 m3. The air undergoes a...
Air is contained in a rigid, well-insulated container of volume 3 m3. The air undergoes a process from an initial state with a pressure of 200 kPa and temperature of 300 K. During the process, the air receives 720 kJ of work from a paddle wheel. Model the air as an ideal gas with constant specific heats. Evaluate the specific heats at 300 K. Neglect changes in kinetic energy and potential energy. Determine the mass of the air in kg,...
A steady-state, steady-flow (Steady State Steady Flow) control volume (with single inflow and outflow) undergoes a...
A steady-state, steady-flow (Steady State Steady Flow) control volume (with single inflow and outflow) undergoes a reversible polytropic process from state 1 to state 2. The process involves water and the following data are given: Inflow pressure: P1 = 100kPa Inflow specific volume: v1 = 1.39478862 m3/kg Outlfow temperature: T2 = 150 oC Outflow specific volume: v2 = 1.93636 m3/kg Determine the following: (Neglect changes in kinetic and potential energy) 1. h1 (specific enthalpy at the inflow, in kJ/kg) 2....