Question

A 1.2 m3 rigid tank initially contains steam at 8 MPa and 400 ◦C. The steam...

A 1.2 m3 rigid tank initially contains steam at 8 MPa and 400 ◦C. The steam slowly comes out through a hole at the bottom until the pressure drops to P0 while
keeps the temperature constant. Making the pertinent considerations determines:
a) the heat transferred, in kJ when P0 = 2 MPa.
b) graph the heat transfer, in kJ, versus P0 from 0.5 to 8.0 MPa

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An initially empty, well insulated, rigid tank with a volume of 2 m3 is fitted with...
An initially empty, well insulated, rigid tank with a volume of 2 m3 is fitted with a mixing device. The tank has two inlets and zero outlets. One inlet is water at 1 MPa and 600◦C while the other is saturated liquid water. Both enter the tank slowly. If the amount of work done by the mixing device is 300 kJ, what must the temperature of the saturated liquid water be if the same mass is added through both inlets...
Steam is contained in a closed rigid container with a volume of 2 m3 . Initially,...
Steam is contained in a closed rigid container with a volume of 2 m3 . Initially, the pressure and the temperature of the steam are 7 bar and 400°C, respectively. The temperature drops as a result of heat transfer to the surroundings. i. Determine the temperature at which the condensation first occurs in °C. [6 marks] ii. Evaluate the fraction of the total mass that has condensed when the pressure reaches 0.75 bar. [4 marks] iii. Calculate the volume in...
Steam is contained in a closed rigid container with a volume of 2 m3 . Initially,...
Steam is contained in a closed rigid container with a volume of 2 m3 . Initially, the pressure and the temperature of the steam are 7 bar and 400°C, respectively. The temperature drops as a result of heat transfer to the surroundings. i. Determine the temperature at which the condensation first occurs in °C. [6 marks] ii. Evaluate the fraction of the total mass that has condensed when the pressure reaches 0.75 bar. [4 marks] iii. Calculate the volume in...
A rigid tank, with a volume of 25 L, contains nitrogen at 355 K and 1.2...
A rigid tank, with a volume of 25 L, contains nitrogen at 355 K and 1.2 MPa. The tank is then cooled to 120 K. What work has been done and the heat transferred in this process? Data: Cv = 0.745 kJ/kgK, Cp = 1.042 kJ/kgK, MM(N2)=28 g/mol, R = 8.314 m^3 Pa/molK. Use the ratio PV = nRT to determine the amount of nitrogen contained in the tank.
A 0.1-m3 rigid tank contains saturated liquid-vapor mixture of water, initially at 150 kPa and 52...
A 0.1-m3 rigid tank contains saturated liquid-vapor mixture of water, initially at 150 kPa and 52 percent quality. Heat is now transferred to the tank until the system becomes superheated vapor and the pressure reaches 300 kPa. Determine (a) the total mass of the mixture in the tank and (b) the amount of heat transferred.
A 10-m3 vessel is being filled with steam at 0.8 MPa and 400°C. It enters the...
A 10-m3 vessel is being filled with steam at 0.8 MPa and 400°C. It enters the tank through a 0.05 m radius pipe. Calculate the rate at which the density in the tank is varying when the steam velocity in the pipe is 20 m/s and choose the nearest value
A rigid tank has a volume of 0.01 m3. It initially contains saturated water at a...
A rigid tank has a volume of 0.01 m3. It initially contains saturated water at a temperature of 200 oC and a quality of 0.4. The top of the tank contains a pressure regulating valve which maintains the vapor at constant pressure. This system undergoes a process where it is heated until all the liquid vaporizes. How much heat in (kJ) is required? You may assume there is no pressure drop in the exit line.
A 0.6-m3 rigid tank is filled with saturated liquid water at 170 °C. A valve at...
A 0.6-m3 rigid tank is filled with saturated liquid water at 170 °C. A valve at the bottom of the tank is now opened, and one-half of the total mass is withdrawn from the tank in liquid form. Heat is transferred to water from a source of 210 °C so that the temperature in the tank remains constant. Determine (a) the amount of heat transfer and (b) the reversible work and exergy destruction for this process. Assume the surroundings to...
A 10-m3 vessel is being filled with steam at 0.8 MPa and 400°C. It enters the...
A 10-m3 vessel is being filled with steam at 0.8 MPa and 400°C. It enters the tank through a 0.05 m radius pipe. Calculate the rate at which the density in the tank is varying when the steam velocity in the pipe is 20 m/s and choose the nearest value a. None b. 0.16 (kg/m3)/s c. 0.08 (kg/m3)/s d. 0.12 (kg/m3)/s e. 0.04 (kg/m3)/s
(10 pts) A 10 m3 rigid storage tank contains oxygen gas (R = 0.2598 kJ/kg.K, cp...
(10 pts) A 10 m3 rigid storage tank contains oxygen gas (R = 0.2598 kJ/kg.K, cp = 0.918 kJ/kg.K, cv = 0.658 kJ/kg.K). The tank is initially 200 kPa and 600o It is cooled to 25oC in 35 minutes. Determine: (3 pts) The mass of oxygen in the tank, in kg. (3 pts) The final pressure in the tank, in kPa. (4 pts) The rate of heat transfer from the oxygen, in kW.