Question

A Carnot engine extracts 100 kJ of heat from an 800°C reservoir and rejects to the...

A Carnot engine extracts 100 kJ of heat from an 800°C reservoir and rejects to the surroundings at 20°C. Calculate the entropy change (a) of the reservoir and (b) of the surroundings.

Homework Answers

Answer #1

Dear student,

Inorder to calculate entropy change of hot reservoir and environment surrounding. We need to know the heat extrated(lost from hot reservoir) and heat rejected (head added to cold reservoir) .

This can be calculated using second law of thermodynamics as shown below.

From the above we see that

Change in entropy of hot reservoir + Change in entropy of cold reservoir = 0

Therefore entropy change of carnot cycle is zero.

Please share your feedback, Rate answer to serve you better, Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A Carnot heat engine receives heat at 800 K and rejects heat to the environment at...
A Carnot heat engine receives heat at 800 K and rejects heat to the environment at 325 K. The entire work output from the heat engine is used to drive the Carnot refrigerator that removes heat from the cold space kept at -18 C at a rate of 275 kJ/min and rejects it to the same environment at 325 K. Determine the following: 1. The Carnot Coefficient of Performance for the refrigeration cycle 2. The Carnot efficiency for the Heat...
To make ice, a freezer that is a reverse Carnot engine extracts 45 kJ as heat...
To make ice, a freezer that is a reverse Carnot engine extracts 45 kJ as heat at -14°C during each cycle, with coefficient of performance 5.5. The room temperature is 32.9°C. How much (a) energy per cycle is delivered as heat to the room and (b) work per cycle is required to run the freezer?
A Carnot engine of efficiency 43% operates with a cold reservoir at 28°C and exhausts 1210...
A Carnot engine of efficiency 43% operates with a cold reservoir at 28°C and exhausts 1210 J of heat each cycle. What is the entropy change for the hot reservoir?
We have a Carnot engine operating between a hot reservoir A and a cold reservoir B....
We have a Carnot engine operating between a hot reservoir A and a cold reservoir B. The work produced in the engine is used to power a flywheel. The hot reservoir is boiling water at p0 = 1 bar and Ta = 373K. The cold reservoir is a block of ice at p0 and Tb = 273K (latent heat = 3.3E5 J/kg). For the flywheel we know that Inertiamoment = 2kg m^2, mass = 6kg, c = 418J/kg K. Final...
The hot reservoir for a Carnot engine has a temperature of 933 K, while the cold...
The hot reservoir for a Carnot engine has a temperature of 933 K, while the cold reservoir has a temperature of 326 K. The heat input for this engine is 7160 J. The 326-K reservoir also serves as the hot reservoir for a second Carnot engine. This second engine uses the rejected heat of the first engine as input and extracts additional work from it. The rejected heat from the second engine goes into a reservoir that has a temperature...
A Carnot engine operating between 600.15 K (327°C) and 300.15 K (27°C) supplies 90% of the...
A Carnot engine operating between 600.15 K (327°C) and 300.15 K (27°C) supplies 90% of the work generated to run a Carnot pump (refrigerator) operating between -263.15 K (-100C) and 298.15 K (250C). If the engine rejects 20 KJ/s to the heat-sink reservoir QC=-20KJ/s at 270C, determine the heat rejection QH of the refrigerator.
A heat engine is assumed to operate on a Carnot cycle. It receives 600kJ heat from...
A heat engine is assumed to operate on a Carnot cycle. It receives 600kJ heat from a high temperature reservoir at 600oC and rejects heat to a low temperature reservoir at 20oC. a. Calculate the thermal efficiency of the cycle. b. What is QL? c. What is the net work produced by this cycle? d. Does this process violate Kelvin-Plank statement? Explain. e. An inventor claimed that he built a heat engine operating between the same reservoirs that give a...
A Carnot heat engine receives 15 kW of heat at 1200 K and rejects heat at...
A Carnot heat engine receives 15 kW of heat at 1200 K and rejects heat at 300 K.   The power produced from the engine is used to drive a reversed Carnot cycle, acting as a refrigerator, where the low temperature is 260 K and the high temperature is 300 K. What is the cooling effect, the amount of heat removed at 260 K, and what is the COPc ? Ans:  6.5     73.125 kW
A Carnot heat engine uses a hot reservoir consisting of a large amount of boiling water...
A Carnot heat engine uses a hot reservoir consisting of a large amount of boiling water and a cold reservoir consisting of a large tub of ice and water. In 5 minutes of operation of the engine, the heat rejected by the engine melts a mass of ice equal to 4.05×10−2 kg . Throughout this problem use Lf=3.34×105J/kg for the heat of fusion for water. A Carnot heat engine uses a hot reservoir consisting of a large amount of boiling...
A Carnot heat engine uses a hot reservoir consisting of a large amount of boiling water...
A Carnot heat engine uses a hot reservoir consisting of a large amount of boiling water and a cold reservoir consisting of a large tub of ice and water. In 5 minutes of operation of the engine, the heat rejected by the engine melts a mass of ice equal to 2.45×10?2 kg . Throughout this problem use L_f=3.34×105J/kg for the heat of fusion for water. A) During this time, how much work W is performed by the engine?