Question

A boiler with a volume of 2 cubic meters contains water with half liquid and half...

A boiler with a volume of 2 cubic meters contains water with half liquid and half steam at a temperature of 200 degrees. The valve located under the boiler is opened and liquid output is provided and during this time, heat is input to the boiler from a 300 degree heat source to keep the temperature inside the boiler constant. When half of the water body in the boiler is drawn;

   a) Find the first and the last degree of dryness.

   b) Find the amount of heat transferred to the boiler.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Liquid water at 24 ºC is fed to a boiler operating at 10 bars and is...
Liquid water at 24 ºC is fed to a boiler operating at 10 bars and is converted at constant pressure to saturated steam.  The steam is produced at a steady state flow rate of 15,000 m3/hr.  Assume that the kinetic energy of the liquid entering the boiler is negligible, and that the steam is discharged from the boiler through a 15 cm diameter pipe.   What is the temperature of the saturated steam (ºC)? Calculate ∆Ĥ (in units of kJ/kg) for this process....
A 0.6-m3 rigid tank is filled with saturated liquid water at 170 °C. A valve at...
A 0.6-m3 rigid tank is filled with saturated liquid water at 170 °C. A valve at the bottom of the tank is now opened, and one-half of the total mass is withdrawn from the tank in liquid form. Heat is transferred to water from a source of 210 °C so that the temperature in the tank remains constant. Determine (a) the amount of heat transfer and (b) the reversible work and exergy destruction for this process. Assume the surroundings to...
A vessel whose walls are thermally insulated contains 2.20 kg of water and 0.450 kg of...
A vessel whose walls are thermally insulated contains 2.20 kg of water and 0.450 kg of ice, all at a temperature of 0.0 ∘C. The outlet of a tube leading from a boiler in which water is boiling at atmospheric pressure is inserted into the water. Part A How many grams of steam must condense inside the vessel (also at atmospheric pressure) to raise the temperature of the system to 25.0 ∘C ? You can ignore the heat transferred to...
An insulated aluminum calorimeter vessel of 150 g mass contains 300 g of liquid nitrogen boiling...
An insulated aluminum calorimeter vessel of 150 g mass contains 300 g of liquid nitrogen boiling at 77 K. A metal block at an initial temperature of 303 K is dropped into the liquid nitrogen. It boils away 15.8 g of nitrogen in reaching thermal equilibrium. The block is then withdrawn from the nitrogen and quickly transferred to a second insulated copper calorimeter vessel of 200 g mass containing 500 g of water at 30.1 degrees celsius. The block coolds...
A 150 gram copper bowl (Ccopper = 386 J/kgC) contains 220 grams of water (Cwater =...
A 150 gram copper bowl (Ccopper = 386 J/kgC) contains 220 grams of water (Cwater = 4190 J/Kgc) and both are at 20.0 degrees celsius. A hot 300 gram copper cylinder is dropped into the water, which causes the water to boil and 5.00 grams of water is in turn converted into steam (Lv = 2256 Kj/kg). The final temperature of the system is 100 degrees Celsius. 1. How much heat was transferred to the water? 2. how much heat...
A tank having a volume of 0.85 m^3 initially contains water as a two-phase liquid vapor...
A tank having a volume of 0.85 m^3 initially contains water as a two-phase liquid vapor mixture at 260 C and a quality of 0.7. Saturated water vapor at 260 C is slowly withdrawn through a pressure-regulating valve at the top of the tank as energy is transferred by heat to maintain the pressure constant in the tank. This continues until the tank is filled with saturated vapor at 260 C. Determine the amount of heat transfer in kJ. Neglect...
A rigid container with a volume of 2 m3 initially contains 0.05 m3 of liquid and...
A rigid container with a volume of 2 m3 initially contains 0.05 m3 of liquid and 1.95 m3 of vapor at 125 kPa. Heat is transferred from a 3000C source to the contents of the vessel until the pressure in the container reaches 4 MPa. The contents of the vessel are now cooled in a surrounding temperature of 250C until the contents reach its initial state. Determine total entropy generated (Sgen) during the cycle.