Question

4. In a two-dimensional flow, when the flow velocity is given by the following equation, find...

4. In a two-dimensional flow, when the flow velocity is given by the following equation, find the streamline equation of this flow. Explain the solution to a highschool level student

u=kx, v=-ky

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4. In a two-dimensional flow, when the flow velocity is given by the following equation, find...
4. In a two-dimensional flow, when the flow velocity is given by the following equation, find the streamline equation of this flow. u=kx, v=-ky with explaination please
A two-dimensional unsteady flow has the velocity components given by u = x / (1 +...
A two-dimensional unsteady flow has the velocity components given by u = x / (1 + t) and v = y / (1 + 2t) Find the equation of the streamlines of this flow which pass through the point (xo, yo) at time t = 0.
The state of a particle is completely described by its wave function Ψ(?,?) One-dimensional Schrodinger Equation--...
The state of a particle is completely described by its wave function Ψ(?,?) One-dimensional Schrodinger Equation-- answer the following questions: 2) Show that when U(x) = 0, and , is a solution to the one-?=2??/ℏΨ=?sin??dimensional Schrodinger equation. 3) Show that when U(x) = 0, and , is a solution to the one-?=2??/ℏΨ=?cos??dimensional Schrodinger equation. 4) Show that where A and B are constants is a solution to the Ψ=??+?Schrodinger equation when U(x) = 0, and when E = 0.
A flow in the x – y plane is given by the following velocity field: u=5...
A flow in the x – y plane is given by the following velocity field: u=5 and v=10m m/s 0<t<20s and u=-5 and v=0 m/s 20<t<40s Paint is released at the starting point. (x,y,t)=(0,0,0) (A) For two particles released from one at t=0 s and the other at t=20 s, road lines at t = 30 draw for. (B) Draw flow lines at t=10 s and t=30 s on the same graph.
A steady, two-dimensional velocity field is given by V with rightwards arrow on top=(u,v)=(3.69-0.7x)i with rightwards...
A steady, two-dimensional velocity field is given by V with rightwards arrow on top=(u,v)=(3.69-0.7x)i with rightwards arrow on top+(2.16+3.06y)j with rightwards arrow on top where the x- and y-coordinates are in meters and the magnitude of velocity is in m/s. The volumetric strain rate in s−1 is A bird is flying in a room with a velocity field of (u, v, w)=0.58x+0.22t–1.22 (m/s). The room is heated by a heat pump so that the temperature distribution at steady state is...
A 2D incompressible flow field has the following velocity components in the x, y and z...
A 2D incompressible flow field has the following velocity components in the x, y and z directions, where z is is “up”, and a, b are constants. U = ay, v = bx, w = 0 (i) Does this flow satisfy conservation of mass? (ii) Show if this is an exact solution to Navier-Stokes equations for incompressible flow?
A 2D incompressible flow field has the following velocity components in the x, y and z...
A 2D incompressible flow field has the following velocity components in the x, y and z directions, where z is is “up”, and a, b are constants. u=ay v=bx w=0 1.Does this flow satisfy conservation of mass? 2.Show if this is an exact solution to Navier-Stokes equations for incompressible flow?
Explain about the two and three dimensional type of flow with the following of each: (i)...
Explain about the two and three dimensional type of flow with the following of each: (i) Definition (2marks) (ii) Draw its flow pattern (1mark) (iii) Discuss its type in the form of mathematical form. (1mark) (iv) It’s application. (1mark)
1.)The velocity field of a flow is given by V=a(x2-y2)i-2axyj (a) Determine the convective acceleration in...
1.)The velocity field of a flow is given by V=a(x2-y2)i-2axyj (a) Determine the convective acceleration in the y direction. (b) Check if continuity equation is satisfied. (c)determine the vorticity. (d) Find the stream function.
Find an equation of the tangent plane to the surface given parametrically by x = u^2,...
Find an equation of the tangent plane to the surface given parametrically by x = u^2, y = v^2, z = u+4v at the point (1, 4, 9).