Question

An air-conditioning system with R134a as the working fluid operates on an ideal vapor compression refrigeration...

An air-conditioning system with R134a as the working fluid operates on an ideal vapor compression refrigeration cycle. The working pressure of the evaporator and the condenser are 200 kPa and 1.0 MPa, respectively. The refrigerant flow rate is 0.03 kg/s.

a) Draw the process cycle on a T-s diagram with labels.

b) Determine the power input and COP of the system.

c) Determine the tons of refrigeration.

d) What is the SEER rating of the system?

e) What is the size of the system in hp .

f) What is the maximum COP based on the reversed Carnot cycle operates at the same temperature range? Determine the percent of increment of the COP compared to the ideal cycle.

g) Suggest ways to improve the COP of vapor compression refrigeration cycl

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An air conditioner using refrigerant-134a as the working fluid and operating on the ideal vapor-compression refrigeration...
An air conditioner using refrigerant-134a as the working fluid and operating on the ideal vapor-compression refrigeration cycle is to maintain a space at 36°C while operating its condenser at 1600 kPa. Determine the COP of the system when a temperature difference of 4°C is allowed for the transfer of heat in the evaporator. (Take the required values from saturated refrigerant-134a tables.)
An ideal vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid....
An ideal vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 1 bar, and saturated liquid exits the condenser at 4 bar. The mass flow rate of refrigerant is 8.5 kg/min. Determine the compressor power, in kW.
Consider a 280 kJ/min refrigeration system that operates on an ideal vapor-compression refrigeration cycle with refrigerant-134a...
Consider a 280 kJ/min refrigeration system that operates on an ideal vapor-compression refrigeration cycle with refrigerant-134a as the working fluid. The refrigerant enters the compressor as saturated vapor at 140 kPa and is compressed to 800 kPa. The saturated refrigerant-134a—pressure table (in SI units) is given below. Determine the quality of the refrigerant at the end of the throttling process.
an ideal vapor compression refrigeration cycle using refrigerant-134a as the working fluid is used to cool...
an ideal vapor compression refrigeration cycle using refrigerant-134a as the working fluid is used to cool a brine solution to -5degrees Celsius. This solution is pumped to various buildings for the purpose of air-conditioning. The refrigerant evaporates at -10 degrees Celsius with a total mass flow rate of 7kg/s and condenses at 600kPa Determine a) the COP of the cycle and b) The total cooling load
Refrigerant 134a is the working fluid in an ideal vapor-compression refrigeration cycle operating at steady state....
Refrigerant 134a is the working fluid in an ideal vapor-compression refrigeration cycle operating at steady state. Refrigerant enters the compressor at 1 bar, -12°C, and the condenser pressure is 9 bar. Liquid exits the condenser at 32°C. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the magnitude of the compressor power, in kW. (b) the refrigeration capacity, in tons. (c) the coefficient of performance.
A two-stage cascade refrigeration system is shown below. The refrigerant is R134a. It consists of two...
A two-stage cascade refrigeration system is shown below. The refrigerant is R134a. It consists of two ideal vapor-compression cycles with heat exchange between the condenser of the lowertemperature cycle and the evaporator of the higher-temperature cycle. The hotter cycle operates between 0.7 MPa and 0.35 MPa, while the cooler cycle operates between 0.35 MPa and 0.12 MPa. If the flow rate in the hotter cycle is 0.5 mol/s, determine the following: What is the flow rate in the cooler cycle?...
An idea vapor-compression refrigeration cycle, with refrigerant R-22 as the working fluid, has an evaporator temperature...
An idea vapor-compression refrigeration cycle, with refrigerant R-22 as the working fluid, has an evaporator temperature of -12 °C and a condenser pressure of 15 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The refrigerating capacity is 4 tons. a.Determine the compressor power (in kW). b.Determine the mass flow rate of the refrigerant (in kg/min). c.Determine the coefficient of performance.
- a vapour-compression air-conditioning cycle where the compressor has an isentropic efficiency of 75%. Refrigerant (R12)...
- a vapour-compression air-conditioning cycle where the compressor has an isentropic efficiency of 75%. Refrigerant (R12) is used as the working fluid with a mass now rate of 0.04kg/s. saturated vapour eaters the compressor at 0.5 MPa and leaves to the condenser at 1.2IMPa. The air-conditioner cools down the station to 26°C through an evaporator, and rejects heat to the 34°C ambient through a condenser. (a) Sketch and label the schematic of the air-conditioning cycle and its T-S and P-h...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 2 bar, and saturated liquid exits the condenser at 8 bar. The isentropic compressor efficiency is 80%. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the compressor power, in kW, (b) the refrigeration capacity, in tons, (1 ton = 3.5168 kW) and, (c) the coefficient of performance, (d) rate of entropy production in kW/K, for the...
Refrigerant 134a is the working fluid in a vapor-compression heat pump system with a heating capacity...
Refrigerant 134a is the working fluid in a vapor-compression heat pump system with a heating capacity of 60,000 Btu/h. The condenser operates at 240 lbf/in.2, and the evaporator temperature is 0°F. The refrigerant is a saturated vapor at the evaporator exit and a liquid at 110°F at the condenser exit. Pressure drops in the flows through the evaporator and condenser are negligible. The compression process is adiabatic, and the temperature at the compressor exit is 180°F. Determine (a) the mass...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT