Question

- a vapour-compression air-conditioning cycle where the compressor has an isentropic efficiency of 75%. Refrigerant (R12)...

- a vapour-compression air-conditioning cycle where the compressor has an isentropic efficiency of 75%. Refrigerant (R12) is used as the working fluid with a mass now rate of 0.04kg/s. saturated vapour eaters the compressor at 0.5 MPa and leaves to the condenser at 1.2IMPa. The air-conditioner cools down the station to 26°C through an evaporator, and rejects heat to the 34°C ambient through a condenser. (a) Sketch and label the schematic of the air-conditioning cycle and its T-S and P-h diagrams based on the information provided in the above. (b) Determine the net of heat removal from the air-conditioned station. The compressor power in kW. The Coefficient of Performance (COP).

- (R12) is the working fluid in a vapor-compression refrigeration cycle. The evaporator temperature is - 12°C. Saturated vapor enters the turbine. Saturated liquid exits the condenser at 34°C. The mass flow rate of the refrigerant is 5 kg/min. Determine: (a) rate of heat transfer to the refrigerant passing through the evaporator, in kW (b) net power input to the cycle, in kW ' (c) the coefficient of performance

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An idea vapor-compression refrigeration cycle, with refrigerant R-22 as the working fluid, has an evaporator temperature...
An idea vapor-compression refrigeration cycle, with refrigerant R-22 as the working fluid, has an evaporator temperature of -12 °C and a condenser pressure of 15 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The refrigerating capacity is 4 tons. a.Determine the compressor power (in kW). b.Determine the mass flow rate of the refrigerant (in kg/min). c.Determine the coefficient of performance.
Refrigerant 134a is the working fluid in a vapor-compression heat pump system with a heating capacity...
Refrigerant 134a is the working fluid in a vapor-compression heat pump system with a heating capacity of 60,000 Btu/h. The condenser operates at 240 lbf/in.2, and the evaporator temperature is 0°F. The refrigerant is a saturated vapor at the evaporator exit and a liquid at 110°F at the condenser exit. Pressure drops in the flows through the evaporator and condenser are negligible. The compression process is adiabatic, and the temperature at the compressor exit is 180°F. Determine (a) the mass...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 2 bar, and saturated liquid exits the condenser at 8 bar. The isentropic compressor efficiency is 80%. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the compressor power, in kW, (b) the refrigeration capacity, in tons, (1 ton = 3.5168 kW) and, (c) the coefficient of performance, (d) rate of entropy production in kW/K, for the...
Refrigerant 134a is the working fluid in a vapor-compression heat pump that provides 35 kW to...
Refrigerant 134a is the working fluid in a vapor-compression heat pump that provides 35 kW to heat a dwelling on a day when the outside temperature is below freezing. Saturated vapor enters the compressor at 2.6 bar, and saturated liquid exits the condenser, which operates at 8 bar. Determine for an isentropic compressor efficiency of 85%: (a) the refrigerant mass flow rate, in kg/s. (b) the magnitude of the compressor power, in kW. (c) the coefficient of performance.
An ideal vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid....
An ideal vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 1 bar, and saturated liquid exits the condenser at 4 bar. The mass flow rate of refrigerant is 8.5 kg/min. Determine the compressor power, in kW.
Refrigerant 134a is the working fluid in an ideal vapor-compression refrigeration cycle operating at steady state....
Refrigerant 134a is the working fluid in an ideal vapor-compression refrigeration cycle operating at steady state. Refrigerant enters the compressor at 1 bar, -12°C, and the condenser pressure is 9 bar. Liquid exits the condenser at 32°C. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the magnitude of the compressor power, in kW. (b) the refrigeration capacity, in tons. (c) the coefficient of performance.
An air conditioner using refrigerant-134a as the working fluid and operating on the ideal vapor-compression refrigeration...
An air conditioner using refrigerant-134a as the working fluid and operating on the ideal vapor-compression refrigeration cycle is to maintain a space at 36°C while operating its condenser at 1600 kPa. Determine the COP of the system when a temperature difference of 4°C is allowed for the transfer of heat in the evaporator. (Take the required values from saturated refrigerant-134a tables.)
Regarding a Vapor-Compression cycle: A refrigerant (HCFC-22) enters the compressor of a refrigerator as a superheated...
Regarding a Vapor-Compression cycle: A refrigerant (HCFC-22) enters the compressor of a refrigerator as a superheated vapor at .14MPa and -20 degrees Celsius at a rate of .05 kg/s and leaves at .8 MPa and 50 degrees Celsius. The refrigerant is cooled in the condenser to 26 degrees Celsius and .72MPa and is then throttled down to .15 MPa. Determine the rate of heat removal from the refrigerated space and the power input to the compressor and the Coefficient of...
An ice-making machine operates on the ideal vapor-compression cycle, using refrigerant-134a. The refrigerant enters the compressor...
An ice-making machine operates on the ideal vapor-compression cycle, using refrigerant-134a. The refrigerant enters the compressor as saturated vapor at 20 psia and leaves the condenser as saturated liquid at 80 psia. Water enters the ice machine at 55°F and leaves as ice at 25°F. For an ice production rate of 15 lbm/h, determine the power input to the ice machine (169 Btu of heat needs to be removed. Compressor's efficiency is 90 percent
An ice-making machine operates on the ideal vapor-compression cycle, using R-134a. The refrigerant enters the compressor...
An ice-making machine operates on the ideal vapor-compression cycle, using R-134a. The refrigerant enters the compressor as saturated vapor at 140 kPa and leaves the condenser as saturated liquid at 600 kPa. Water enters the ice machine at 13oC and leaves as ice at -4oC, while removing heat at 393 kJ per kg of water. Estimate the mass flow rate of the refrigerant and the power input to the ice machine for an ice production rate of 7 kg/h.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT