Question

Used engine oil flows at 0.025 m/s through a 12.5-mm-diameter tube. The oil enters the tube...

Used engine oil flows at 0.025 m/s through a 12.5-mm-diameter tube. The oil enters the tube at a temperature of 27 ºC, while the tube surface temperature is maintained at 87º C. Determine the oil outlet temperature for a 100-m and the total heat transfer.

Homework Answers

Answer #1

I had solved your question so please rate me thumbs up for the solution.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 10-mm diameter tube has a maintained surface temperature of 200°C. Engine oil enters the tube...
A 10-mm diameter tube has a maintained surface temperature of 200°C. Engine oil enters the tube at 70°C at a flow rate of 0.5 kg/s and exits at 105°C. Find the length, in m, of the tube and well as the corresponding heat transfer rate, in W. Assume fully developed flow and use the Dittus–Boelter equation to calculate the average Nusselt number. q = .    L =
Pressurized Water is heated in a thin tube with a diameter of 60 mm. water enters...
Pressurized Water is heated in a thin tube with a diameter of 60 mm. water enters with a mass flow rate of 0.01 kg/s and an inlet temperature of 20°C. a uniform heat flux of 2000 W/m2 is applied to the tube. What is the required length of the tube to obtain an exit temperature of 80°C for the water? If the water reaches 80°C at the outlet, what is the surface temperature of the tube at the outlet?
A 1 to 2 baffled shell-and-tube type heat exchanger is used as an engine oil cooler....
A 1 to 2 baffled shell-and-tube type heat exchanger is used as an engine oil cooler. Cooling water flows through tubes at 25 °C at a rate of 8.16 kg/s and exits at 35 °C. The inlet and outlet temperatures of the engine oil are 65 and 55 °C, respectively. The heat exchanger has 12.25-in. I.D. shell, and 18 BWG and 0.75-in. O.D. tubes. A total of 160 tubes are laid out on a 15/16-in. triangular pitch. By assuming Ro...
Mercury at an inlet temperature of 75 °C flows through a 2 cm inside diameter tube...
Mercury at an inlet temperature of 75 °C flows through a 2 cm inside diameter tube at a flow rate of 1.5 kg/s. This tube is part of a nuclear reactor in which heat can be generated uniformly at any desired rate by adjusting the neutron flux level. Determine convection heat transfer coefficient, and the heat flux required for a 1.5 m length of tube required to raise the temperature of the mercury to 275 °C. Also determine if mercury...
A condenser is made up of a horizontal tube bank (0.75 m long, 200 mm diameter)....
A condenser is made up of a horizontal tube bank (0.75 m long, 200 mm diameter). Saturated steam at 143.3 kPa condenses on the outside surface of the tubes. The surface temperature is maintained at 90°C. Evaluate the condensation rate and heat transfer coefficient if the bank consists of 15 tubes.
Air is heated as it flows through a constant diameter tube. The air enters the tube...
Air is heated as it flows through a constant diameter tube. The air enters the tube at 50 psia and 80 F with an average velocity of 10 ft/s at the entrance. The air leaves at 45 psia and 255 F. a) Sketch the control volume b) Determine the average velocity of the air (ft/s) at the exit c) If 23 lbm/min of air is to be heated, what diameter (in.) tube is required?
Kerosene enters a 5 cm diameter tube at 35C with a velocity of 3 m/s. The...
Kerosene enters a 5 cm diameter tube at 35C with a velocity of 3 m/s. The tube is wrapped with a resistance heating element so that when it is energized a uniform heat flux is imposed on the tube. At the exit of the tube, the temperature of the kerosene is to be 45C. A constraint is placed on the process, such that the local kerosene temperature cannot exceed 80C; this is likely to occur at the wall of the...
Blood flows at 0.0065 kg/s through an artery of diameter 8 mm and length 350 mm....
Blood flows at 0.0065 kg/s through an artery of diameter 8 mm and length 350 mm. It enters the artery at 36.5°C and leaves it at 34.0°C. Calculate the rate of heat transfer from the blood, the mean heat flux through the artery wall, and the mean velocity of the blood. (Note: the thermophyhsical properties of blood may be approximated by properties of liquid water at 37°C.)
Combustion gases passing through a 2.3-cm-internal diameter circular tube are used to vaporize waste water at...
Combustion gases passing through a 2.3-cm-internal diameter circular tube are used to vaporize waste water at atmospheric pressure. Hot gases enter the tube at 115 kPa and 250°C at a mean velocity of 5 m/s, and leave at 150°C. If the average heat transfer coefficient is 120 W/m2 °C and the inner surface temperature of the tube is 112°C, determine the tube length. Answer in cm with two(2) decimal places.
An aluminum fin 1.6 mm thick surrounds a tube 2.5 cm in diameter. The length of...
An aluminum fin 1.6 mm thick surrounds a tube 2.5 cm in diameter. The length of the fin is 12.5 mm. The tube-wall temperature is 200◦C, and the environment temperature is 20◦C. The heat-transfer coefficient is 60 W/m2 · ◦C. Consider the heat dissipated in a pipe 1.20 m long if the fins are 4.2 mm apart from center to center Explain your procedure with formulas