Question

An adiabatic compressor operates on air in a steady state process. The air enters the compressor...

An adiabatic compressor operates on air in a steady state process. The air enters the compressor at 25 oC and 150 kPa and exits at 250 oC and 500 kPa. Assuming constant specific heats for air at 300K, calculate the isentropic efficiency for this compressor.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a compressor operates at steady state. air enters the compressor with a mass flow rate of...
a compressor operates at steady state. air enters the compressor with a mass flow rate of 28800 kg/h at .99 bar and 27C and exits at 7.5 bar. the compressor operates adiabatically and the effects of motion and gravity can be ignored. the compressor isentropic efficiency is 70%. for exergy analysis the reference state is To=27C Po=.99 bar. use ideal gas model for air (MW=28.97 kg/kmol) a. determine required power for compressor in kW b. determine rate of exergy destruction...
Carbon dioxide enters an adiabatic compressor at100 kPa and 300 K at a rate of 0.5...
Carbon dioxide enters an adiabatic compressor at100 kPa and 300 K at a rate of 0.5 kg/s and exits at 600 kPa and 450 K. Neglecting the kinetic energy changes, determine the isentropic efficiency of the compressor. Assume constant specific heats. please show all the work and how you got it please and thank you
An adiabatic compressor is used to pressurize air from 100 kPa to 1900 kPa. If the...
An adiabatic compressor is used to pressurize air from 100 kPa to 1900 kPa. If the air entering the compressor is at 300 K, and the isentropic efficiency of the air is 75 %, then calculate the required work by performing an: (a) approximate analysis (assume 300 K values for specific heats) (b) exact analysis (variable specific heats)
An adiabatic compressor is used to pressurize air from 160 kPa to 1900 kPa. If the...
An adiabatic compressor is used to pressurize air from 160 kPa to 1900 kPa. If the air entering the compressor is at 300 K, and the isentropic efficiency of the air is 70 %, then calculate the required work by performing an: (a) approximate analysis (assume 300 K values for specific heats) kJkg (b) exact analysis (variable specific heats) kJkg
Air at 277 oC and 1000 kPa enters a turbine operating at steady state with a...
Air at 277 oC and 1000 kPa enters a turbine operating at steady state with a mass flow rate of 70 kg/hr. It exits the turbine at 27 oC and 700 kPa. During this process heat is added from the surroundings at 77 oC to the turbine at a rate of 1000 kJ/hr. Using variable specific heats, determine whether this claim is correct. Justify your answer.
NO INTERPOLATION REQUIRED Air enters an adiabatic turbine at 1000 kPa and 1625 degrees C (state...
NO INTERPOLATION REQUIRED Air enters an adiabatic turbine at 1000 kPa and 1625 degrees C (state 1) with a mass flow rate of 5 kg/s and leaves at 100 kPa the isentropic efficiency of the turbine is 85%. Neglecting the kinetic energy change of the steam, and considering variable specific heats, determine: a. the isentropic power of the turbine Isentropic power in kW b. the temperature at the turbine exit temperature at exit in degrees C c. the actual power...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 2 bar, and saturated liquid exits the condenser at 8 bar. The isentropic compressor efficiency is 80%. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the compressor power, in kW, (b) the refrigeration capacity, in tons, (1 ton = 3.5168 kW) and, (c) the coefficient of performance, (d) rate of entropy production in kW/K, for the...
A two-part compressor operates with steady state conditions. The exit of the first part of the...
A two-part compressor operates with steady state conditions. The exit of the first part of the compressor is also the inlet of the second part of the compressor. In the first part of the compressor, air is compressed from 1.5 bar, 350 K to 5.5 bar with a mass flow rate of 7.2 kg/sec. In the second part of the compressor, air is compressed from 5.5 bar to 9.5 bar with a mass flow rate of 5.8 kg/sec. Each unit...
Air enters a compressor operating at steady state at 15.4 lbf/in^2, 80°F with a volumetric flow...
Air enters a compressor operating at steady state at 15.4 lbf/in^2, 80°F with a volumetric flow rate of 424 ft^3/min and exits at 176.4 lbf/in^2, 260°F. Heat transfer occurs at a rate of 6800 Btu/h from the compressor to its surroundings. Assuming the ideal gas model for air and neglecting kinetic and potential energy effects, determine the power input, in hp.
4.58 Air enters a compressor operating at steady state with a pressure of 14.7 lbf/in^2, a...
4.58 Air enters a compressor operating at steady state with a pressure of 14.7 lbf/in^2, a temperature of 808 F, and a volumetric flow rate of 18 ft /s. The air exits the compressor at a pressure of 90 lbf/in^2 Heat transfer from the compressor to its surroundings occurs at a rate of 9.7 Btu per lb of air flowing. The compressor power input is 90 hp. Neglecting kinetic and potential energy effects and modeling air as an ideal gas,...