Question

Air at 277 oC and 1000 kPa enters a turbine operating at steady state with a...

Air at 277 oC and 1000 kPa enters a turbine operating at steady state with a mass flow rate of 70 kg/hr. It exits the turbine at 27 oC and 700 kPa. During this process heat is added from the surroundings at 77 oC to the turbine at a rate of 1000 kJ/hr. Using variable specific heats, determine whether this claim is correct. Justify your answer.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An adiabatic compressor operates on air in a steady state process. The air enters the compressor...
An adiabatic compressor operates on air in a steady state process. The air enters the compressor at 25 oC and 150 kPa and exits at 250 oC and 500 kPa. Assuming constant specific heats for air at 300K, calculate the isentropic efficiency for this compressor.
NO INTERPOLATION REQUIRED Air enters an adiabatic turbine at 1000 kPa and 1625 degrees C (state...
NO INTERPOLATION REQUIRED Air enters an adiabatic turbine at 1000 kPa and 1625 degrees C (state 1) with a mass flow rate of 5 kg/s and leaves at 100 kPa the isentropic efficiency of the turbine is 85%. Neglecting the kinetic energy change of the steam, and considering variable specific heats, determine: a. the isentropic power of the turbine Isentropic power in kW b. the temperature at the turbine exit temperature at exit in degrees C c. the actual power...
An air turbine with inlet conditions of 500 kPa, 327 C operates in steady flow and...
An air turbine with inlet conditions of 500 kPa, 327 C operates in steady flow and has an actual power output of 70 kW. The discharge pressure is 100 kPa and the turbine has an efficiency of 0.8 at these operating conditions. Consider specific heats constant. a) Calculate the actual mass flow rate at the turbine exit. b) Calculate the actual turbine exit temperature. c) Show the actual and ideal processes on a T-s and P-v diagram.
Water at p1 = 20 bar, T1 = 400oC enters a turbine operating at steady state...
Water at p1 = 20 bar, T1 = 400oC enters a turbine operating at steady state and exits at p2 = 1.5 bar, T2 = 230oC. The water mass flow rate is 4000 kg/hour. Stray heat transfer and kinetic and potential energy effects are negligible. Determine the power produced by the turbine, in kW, and the rate of entropy production in the turbine, in kW/K.
An adiabatic gas turbine uses air to produce work. Air expands adiabatically from 600 kPa and...
An adiabatic gas turbine uses air to produce work. Air expands adiabatically from 600 kPa and 287 C to 90 kPa and 67 C. Take specific heats at room temperature (300 K). a) Find the isentropic efficiency of the turbine. b) Find the work produced by the turbine for a mass flow rate of 2.5 kg/s. c) If the mass flow rate of air is again 2.5 kg/s, find the entropy generation under steady conditions.
Air enters a counterflow heat exchanger operating at steady state at 22°C, 0.1 MPa and exits...
Air enters a counterflow heat exchanger operating at steady state at 22°C, 0.1 MPa and exits at 7°C. Refrigerant 134a enters at 0.2 MPa, a quality of 0.21, and a mass flow rate of 30 kg/h. Refrigerant exits at 0°C. There is no significant change in pressure for either stream. (a) For the Refrigerant 134a stream, determine the rate of heat transfer, in kJ/h (b) For the refrigerant stream evaluate the change in flow exergy rate, in kJ/h. (c) For...
Water vapor at 6 MPa, 500°C enters a turbine operating at steady state and expands to...
Water vapor at 6 MPa, 500°C enters a turbine operating at steady state and expands to 20 kPa. The mass flow rate is 3 kg/s, and the power developed is 2626 kW. Stray heat transfer and kinetic and potential energy effects are negligible. Determine: (a) the isentropic turbine efficiency and (b) the rate of entropy production within the turbine, in kW/K.
13)  A turbine, operating under steady-flow conditions, receives 5000 kg of steam per hour. The steam enters...
13)  A turbine, operating under steady-flow conditions, receives 5000 kg of steam per hour. The steam enters the turbine at a velocity of 3000 m/min, an elevation of 5 m and a specific enthalpy of 2787 kJ/kg. It leaves the turbine at a velocity of 6000 m/min, an elevation of 1 m and a specific enthalpy of 2259 kJ/kg. Heat losses from the turbine to the surroundings amount to 16736 kJ/h. Determine the power output of the turbine. 14) 12 kg...
Steam at 6 MPA, 600°C, enters a well-insulated turbine operating at steady state and exits at...
Steam at 6 MPA, 600°C, enters a well-insulated turbine operating at steady state and exits at 0.1 bar. The isentropic efficiency of the turbine is 94.7%. Assuming the kinetic and potential energy effects to be negligible, determine: (a) Work output, in kJ/kg, (b) The temperature at the exit of the turbine, in °C, and (c) The rate of entropy production within the turbine, in kJ/K per kg of steam flowing through the turbine. (All steps required – Given/Find/Schematic/Engineering Model/Analysis) THANK...
Air enters the compressor of an ideal gas refrigeration cycle at 7oC and 40 kPa and...
Air enters the compressor of an ideal gas refrigeration cycle at 7oC and 40 kPa and the turbine at 37oC and 170 kPa. The mass flow rate of air through the cycle is 0.3 kg/sec. Assuming variable specific heats for air, determine (a) the rate of refrigeration, (b) the net power input, and (c) the coefficient of performance. Also, draw the T-s diagram of the gas refrigeration cycle.   
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT