Question

Air at a stagnation pressure of (600 kpa) and stagnation temperature of (323K) flows through a...

Air at a stagnation pressure of (600 kpa) and stagnation temperature of (323K) flows through a constant area duct with diameter of (0.02 m). Heat is transferred to the duct at a rate of (200 kJ/kg). Determine the naximum mass rate of flow and back pressure. Take (C=1.0035 kJ/kg.K).
please i need solve in 30 min

Homework Answers

Answer #1

Please ask your doubt in the comment box.there may be variation in answers because of table value.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Assume that air is drawn steadily through a frictionless, adiabatic converging‐diverging nozzle into a frictionless, constant‐area...
Assume that air is drawn steadily through a frictionless, adiabatic converging‐diverging nozzle into a frictionless, constant‐area duct with heat addition. The air enters the constant area pipe section at a static pressure of 200 kPa, static temperature of 500K, and velocity of 400 m/s. (a) If 500 kJ/kg is removed from the flow, determine the static pressure, static temperature and velocity of the flow leaving the duct. (b) What is the maximum amount of heat addition for these inflow conditions?...
The stagnation pressure and temperature of air supplied to a convergent/divergent nozzle are held constant at...
The stagnation pressure and temperature of air supplied to a convergent/divergent nozzle are held constant at values of 430K and 600kPa. The nozzle has an outlet area of 0.09m2 and an exit to throat area ratio of 2.51. (i) Calculate the exit pressure required to produce a normal shock at the exit plane of the nozzle. (ii) Calculate the mass flow rate of air through the nozzle when there is a normal shock at the exit plane. (iii) Calculate the...
Air is flowing through a nozzle, from a reservoir with pressure of 600 kPa and temperature...
Air is flowing through a nozzle, from a reservoir with pressure of 600 kPa and temperature of 350 K, with supersonic flow downstream of the throat. A shock occurs in the expanding part of the nozzle where the nozzle area is 9 times larger than the throat area. What is the pressure immediately downstream of the shock, in kilopascals?
Air at 98 kPa and 30.6°C flows upward through a 6-cm-diameter inclined duct at a rate...
Air at 98 kPa and 30.6°C flows upward through a 6-cm-diameter inclined duct at a rate of 87 L/s. The duct diameter is then reduced to 4 cm through a reducer. The pressure change across the reducer is measured by a water manometer. The elevation difference between the two points on the pipe where the two arms of the manometer are attached is 0.20 m. Determine the differential height between the fluid levels of the two arms of the manometer....
Air flows steadily through an adiabatic turbine, entering at 1.4 MPa, 600°C, and 178 m/s and...
Air flows steadily through an adiabatic turbine, entering at 1.4 MPa, 600°C, and 178 m/s and leaving at 150 kPa, 200°C, and 210 m/s. The inlet of the turbine is 105 cm2 . Assume that air is an ideal gas with constant specific heat. Given CP = 1.013 kJ/kgK. Estimate: i) the mass flow rate of the air ii) the power output of the turbine, in kW
Air with a mass of 2 kg is heated at a constant pressure of 200 kPa...
Air with a mass of 2 kg is heated at a constant pressure of 200 kPa to a temperature of 500°C. Calculate the entropy change if the initial volume is 0.8 m3. Take ???? = 1.00 kJ/kg ? K and model air as an ideal gas. (Hint: Use the appropriate TdS [Gibbs] relation to calculate entropy change.)
compressible flow: A subsonic flow of air passes through a pipe of 2.5-cm diameter which is...
compressible flow: A subsonic flow of air passes through a pipe of 2.5-cm diameter which is choked at the exit. At the pipe inlet, the stagnation pressure is 700 kPa and the stagnation temperature is 330 K. If f¯ = 0.022 and the pipe length is 12 m, what will be the mass flow rate through the pipe, in kg/sec?
There is an air compressor. The air temperature and pressure flowing into the compressor are 20℃...
There is an air compressor. The air temperature and pressure flowing into the compressor are 20℃ and 80kPa. At the outlet of the compressor, the pressure is 800 kPa and the temperature is 200℃. When the required power of the compressor is 400kW, find the heat rate (Q)[kW]. Compressor outlet inner diameter is 10cm, flow speed is 20m/s.
An adiabatic gas turbine uses air to produce work. Air expands adiabatically from 600 kPa and...
An adiabatic gas turbine uses air to produce work. Air expands adiabatically from 600 kPa and 287 C to 90 kPa and 67 C. Take specific heats at room temperature (300 K). a) Find the isentropic efficiency of the turbine. b) Find the work produced by the turbine for a mass flow rate of 2.5 kg/s. c) If the mass flow rate of air is again 2.5 kg/s, find the entropy generation under steady conditions.
Air at 373°C and 121 kPa flows through a horizontal 7 cm diameter pipe at a...
Air at 373°C and 121 kPa flows through a horizontal 7 cm diameter pipe at a speed of 50 m/s. If the air changes temperature to 375°C at a constant pressure, what is the value of the change in the flow of kinetic energy? Write your result in J/s.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT