Question

Liquid water at velocity of 2 m/s and temperature of 15 °C flows over a flat...

Liquid water at velocity of 2 m/s and temperature of 15 °C flows over a flat plate. The plate has a width of 1 m, length of 0.4 m and surface temperature of 37 °C.
Determine:
(a) the average heat transfer coefficient.
(b) the convection heat transfer rate from the top surfacc of the platc.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Air flows over a plate. The temperature of the air is 85 ° C and the...
Air flows over a plate. The temperature of the air is 85 ° C and the speed is 3.5 m / s. The length of the plate is 1.7 m and at a constant temperature of 25 ° C across the surface. According to this, a.) Calculate the speed and temperature boundary layer thickness at the end of the plate. b.) Find the local heat transfer coefficient and heat flux at the end of the plate. c.) Find the average...
Dry air at 35°C and a velocity of 20 m/s flows over a wetted plate of...
Dry air at 35°C and a velocity of 20 m/s flows over a wetted plate of length 500 mm and width 150 mm. An embedded electrical heater supplies power to maintain the plate surface temperature at 20°C. What is the evaporation rate (kg/h) of water from the plate? What electrical power is required to maintain steady-state conditions? Determine the evaporation rate of water from the plate, in kg/h Determine the electrical power is required to maintain steady-state conditions, in W
Air at a pressure of 1 atm and a temperature of 15C is in parallel flow...
Air at a pressure of 1 atm and a temperature of 15C is in parallel flow at a velocity of 10 m/s over a 3-m long flat plate that is heated to a uniform temperature of 140 C. (a) What is the average heat transfer coefficient and heat transfer rate for the plate? (b) What is the local heat transfer coefficient and heat flux at the midpoint of the plate? (c) Plot the variation of the heat flux with distance...
A square plate of 0.5 m length is heated to temperature of 383 K. Air at...
A square plate of 0.5 m length is heated to temperature of 383 K. Air at 293 K and 1 atm flows over the plate at 15 m/s. Calculate the total heat transferred. Determine the convection heat transfer coefficient, thermal boundary layer, and the velocity boundary layer at the trailing edge of the plate.
Airflow (velocity of u∞=15m/s, the temperature of T∞= 15°C) sweep over a flat surface with an...
Airflow (velocity of u∞=15m/s, the temperature of T∞= 15°C) sweep over a flat surface with an area of 0.25 m2 and a temperature of 140 °C. The airflow induces a drag force of 0.25 N on the surface. What is the heat transfer rate across the surface? You can use Table A.4 in the lecture slides or other available data to evaluate air properties (Hint: Use Modified Reynolds analogy) (10 points)
The air at 20 ° C flows at a speed of 5 m / s on...
The air at 20 ° C flows at a speed of 5 m / s on a plate of 4 m length, 3 m width and a temperature of 80 ° C. What is the heat transfer rate of the surface from the laminar flow zone? (For air, take k = 0.02735 W / m. ° C, Pr = 0.7228, v = 1.798x105 m² / s.)
Liquid (A) flows down as a thin film over the outside surface of a vertical flat...
Liquid (A) flows down as a thin film over the outside surface of a vertical flat plate 1.5 m wide (W = 1.5 m) and 3.5 m long (L = 3.5). Inert gas (B) flows across (perpendicular to) the width of the flat plate at a speed of 5 m/s. The supply of (A) is 0.27 mol/s at one end of the plate and the flow is considered to be turbulent. The gas composition of (A) at the edge of...
Consider atmospheric air at 25oC and a velocity of 20 m/s flowing over both surfaces of...
Consider atmospheric air at 25oC and a velocity of 20 m/s flowing over both surfaces of a 1-m-long flat plate that is maintained at 100oC. Determine the rate of heat transfer per unit width from the plate for 5 values of the critical Reynolds number corresponding to 5x10 .
Liquid water flows in a long pipe of internal diameter of D = 0.01 m at...
Liquid water flows in a long pipe of internal diameter of D = 0.01 m at a mean velocity of V = 0.065 m/s. The pipe is maintained at a constant and uniform surface temperature. Assume the flow is both hydrodynamically and thermally fully developed. For simplicity, evaluate the properties of water at 300 K. Calculate the convective heat transfer coefficient of the flow inside the pipe in W/m2K?
71 mm thick horizontal plate made of an opaque material of thermal conductivity k= 25 W/m-K....
71 mm thick horizontal plate made of an opaque material of thermal conductivity k= 25 W/m-K. At the bottom, water flows at a temperature of T∞,w = 25C, whereas air flows at the top of the plate at T∞,a = 710 C having convection coefficient of ha= 71 W/m2-K. Assuming a diffused top of the plate that receives an irradiated flux of 7100W/m2, of which 30% is reflected back. The top and bottom surface temperatures are maintained at 43 C...