Question

air pressure of 103 kPa., entering the compressor at a temperature of 15 degrees Celsius and...

air pressure of 103 kPa., entering the compressor at a temperature of 15 degrees Celsius and a low speed. 1 mPa pressure, 336 degrees Celsius temperature and 106 m / s speed is coming out of the compressor. The compressor is cooled by air at a temperature of 15 degrees Celsius and 26 kW. The power input to the compressor is 298 kW. (cp= 1.005kj/kgK , R=0.287 kj/kgK)

a) Find the mass flow of air

b) calculate the irreversibility in the compressor

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Air enters the compressor of a gas-turbine plant at ambient conditions of 100 kPa and 25°C...
Air enters the compressor of a gas-turbine plant at ambient conditions of 100 kPa and 25°C with a low velocity and exits at 1 MPa and 347°C with a velocity of 90 m/s. The compressor is cooled at a rate of 1500 kJ/min, and the power input to the compressor is 250 kW. Determine (a) temperature at the compressor exit Investigate the effect of cooling rate from 1300 kJ/min to 1600 kJ/min in steps of 50 kJ/min on the mass...
There is an air compressor. The air temperature and pressure flowing into the compressor are 20℃...
There is an air compressor. The air temperature and pressure flowing into the compressor are 20℃ and 80kPa. At the outlet of the compressor, the pressure is 800 kPa and the temperature is 200℃. When the required power of the compressor is 400kW, find the heat rate (Q)[kW]. Compressor outlet inner diameter is 10cm, flow speed is 20m/s.
An adiabatic air compressor compresses 10.6 L/s of air at 120 kPa and 20°C to 1000...
An adiabatic air compressor compresses 10.6 L/s of air at 120 kPa and 20°C to 1000 kPa and 300°C. The constant pressure specific heat of air at the average temperature of 160°C = 433 K is cP = 1.018 kJ/kg·K. The gas constant of air is R = 0.287 kPa·m3/kg·K. Determine the work required by the compressor
Air at a pressure of 101 kPa and temperature of 288 K enters an axial compressor...
Air at a pressure of 101 kPa and temperature of 288 K enters an axial compressor stage with a velocity of 170 m/s. There are no guide vanes, so the air enters in the axial direction only. When traveling through the rotor, the air turns 15 degrees. This means the angle of the relative velocity with respect to the axis is 15 degrees greater when entering the rotor than when it leaves. The rotor spins at 8000 rpm and has...
Air at 100 kPa and 10°C enters a compressor and is brought to 1000 kPa and...
Air at 100 kPa and 10°C enters a compressor and is brought to 1000 kPa and 50°C. The constant pressure heat capacity of air is 1.01 kJ/kg K. If 15 kg/min of air are to be compressed, determine the power require- ment of the compressor. State your assumptions. (12.625 kW)
1. Air at a pressure of 101 kPa and temperature of 288 K enters an axial...
1. Air at a pressure of 101 kPa and temperature of 288 K enters an axial compressor stage with a velocity of 170 m/s. There are no guide vanes, so the air enters in the axial direction only. When traveling through the rotor, the air turns 15 degrees. This means the angle of the relative velocity with respect to the axis is 15 degrees greater when entering the rotor than when it leaves. The rotor spins at 8000 rpm and...
Use cold-air-standard analysis with the fluid modeled as an ideal gas with R=0.287 kJ/kg-K and constant...
Use cold-air-standard analysis with the fluid modeled as an ideal gas with R=0.287 kJ/kg-K and constant k=1.4. Neglect changes in kinetic and potential energy. Consider a SSSF of air at 300 K and 100 kPa entering the compressor of a Simple Brayton Cycle Gas Turbine powerplant. The cycle pressure ratio is 40 and maximum cycle temperature is 1800 K. For compressor isentropic efficiency of 82% the compressor work input per unit mass = __ kJ/kg (enter the nearest positive integer...
A steam turbine has inlet steam pressure p1 = 1.4 MPa absolute. Inlet steam temperature is...
A steam turbine has inlet steam pressure p1 = 1.4 MPa absolute. Inlet steam temperature is T1 = 400 oC. This corresponds to inlet enthalpy per unit mass of h1 = 3121 kJ/kg. Exit pressure of the steam is p2 = 101 kPa absolute. Exit steam temperature is T2 = 100 oC. This corresponds to exit enthalpy per unit mass of h2 = 2676 kJ/kg. Inlet speed of the steam is V1 = 15 m/s and exit speed is V2...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT