Question

Air in a rigid tank is at 140 kPa, 300 K with a volume of 0.6...

Air in a rigid tank is at 140 kPa, 300 K with a volume of 0.6 m3. The tank is heated to 400 K. Now one side of the tank acts as a piston letting the air expand slowly at constant temperature process to state 3 with a volume of 1.4 m3. The total heat transfer is.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.2 m3 piston/cylinder contains air at 400 K and 400 kPa and receives heat from...
A 0.2 m3 piston/cylinder contains air at 400 K and 400 kPa and receives heat from a constant temperature heat source at 1300 K.   The piston expands at constant pressure to a volume of 0.6 m3. Determine the change of availability of the system.
A 0.6-m3 rigid tank is filled with saturated liquid water at 170 °C. A valve at...
A 0.6-m3 rigid tank is filled with saturated liquid water at 170 °C. A valve at the bottom of the tank is now opened, and one-half of the total mass is withdrawn from the tank in liquid form. Heat is transferred to water from a source of 210 °C so that the temperature in the tank remains constant. Determine (a) the amount of heat transfer and (b) the reversible work and exergy destruction for this process. Assume the surroundings to...
A rigid, well-insulated tank, with a volume of 0.057 m3 , contains air at p1 =...
A rigid, well-insulated tank, with a volume of 0.057 m3 , contains air at p1 = 1.4 bar, T1 = 280 K. The air is stirred by a paddle wheel, resulting in an energy transfer to the gas of magnitude 6.78 kJ. Assuming ideal gas behavior for the air, determine the final temperature, in K, and the final pressure, in bar. Neglect kinetic and potential energy effects
Air is contained in a rigid, well-insulated container of volume 3 m3. The air undergoes a...
Air is contained in a rigid, well-insulated container of volume 3 m3. The air undergoes a process from an initial state with a pressure of 200 kPa and temperature of 300 K. During the process, the air receives 720 kJ of work from a paddle wheel. Model the air as an ideal gas with constant specific heats. Evaluate the specific heats at 300 K. Neglect changes in kinetic energy and potential energy. Determine the mass of the air in kg,...
An isentropic compressor that takes in air from the atmosphere at 100 kPa and 300 K...
An isentropic compressor that takes in air from the atmosphere at 100 kPa and 300 K compresses it to 1 MPa. The compressor feeds into a rigid tank that is initially filled with 5 kg of air at a pressure of 500 kPa and a temperature of 500 K. Once the mass in the tank reaches 8 kg, the compressor will stop to prevent the tank from rupturing, which will occur if the pressure exceeds 1000 kPa. a) Determine the...
A rigid closed tank is full of oxygen at 120 kPa and 25 C. The mass...
A rigid closed tank is full of oxygen at 120 kPa and 25 C. The mass of oxygen in the tank is 1.8 kg. A stirring device introduces 150 kJ of work and there is heat loss to the surroundings in the amount of 45 kJ. Find the final temperature in Celsius and pressure in kPa. Assume specific heats constant at room temperature (300 K).
A rigid closed tank is full of oxygen at 120 kPa and 25 C. The mass...
A rigid closed tank is full of oxygen at 120 kPa and 25 C. The mass of oxygen in the tank is 1.8 kg. A stirring device introduces 150 kJ of work and there is heat loss to the surroundings in the amount of 45 kJ. Find the final temperature in Celsius and pressure in kPa. Assume specific heats constant at room temperature (300 K).
An initially empty, well insulated, rigid tank with a volume of 2 m3 is fitted with...
An initially empty, well insulated, rigid tank with a volume of 2 m3 is fitted with a mixing device. The tank has two inlets and zero outlets. One inlet is water at 1 MPa and 600◦C while the other is saturated liquid water. Both enter the tank slowly. If the amount of work done by the mixing device is 300 kJ, what must the temperature of the saturated liquid water be if the same mass is added through both inlets...
A rigid copper tank, initially containing 1 m3 of air at 295 K, 4 bar, is...
A rigid copper tank, initially containing 1 m3 of air at 295 K, 4 bar, is connected by a valve to a large supply line carrying air at 295 K, 15 bar. The valve is opened only as long as required to fill the tank with air to a pressure of 15 bar. Finally, the air in the tank is at 310 K. The copper tank, which has a mass of 20 kg, is at the same temperature as the...
A rigid tank has a volume of 0.01 m3. It initially contains saturated water at a...
A rigid tank has a volume of 0.01 m3. It initially contains saturated water at a temperature of 200 oC and a quality of 0.4. The top of the tank contains a pressure regulating valve which maintains the vapor at constant pressure. This system undergoes a process where it is heated until all the liquid vaporizes. How much heat in (kJ) is required? You may assume there is no pressure drop in the exit line.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT