Question

A horizontal pipe with an outer surface temperature of 80 * C and an outside diameter...

A horizontal pipe with an outer surface temperature of 80 * C and an outside diameter of 100 mm is located in a room at atmospheric pressure at 20 ° C. Find the required pipe length for the loss of heat from the pipe to 1 kW. (Physical properties for air k = 0.0287 W / mK, Pr = 0.70, v = 19x10-6 m² / s)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A long 8-cm-diameter steam pipe whose external surface temperature is 90°C passes through some open area...
A long 8-cm-diameter steam pipe whose external surface temperature is 90°C passes through some open area that is not protected against the winds. Determine the rate of heat loss from the pipe per unit of its length when the air is at 1 atm pressure and 7°C and the wind is blowing across the pipe at a velocity of 47 km/h. The properties of air at 1 atm and the film temperature of (Ts + T∞)/2 = (90 + 7)/2...
The surface temperature of 200 ft of 8-inch diameter un-insulated pipe carrying steam at 335 F...
The surface temperature of 200 ft of 8-inch diameter un-insulated pipe carrying steam at 335 F is 250 F. The pipe is located in a room with air and surroundings at 50 F. The surface emissivity of the pipe is 0.70. Calculate convection, radiation and total heat loss from the pipe (Btu/hr). The pipe is insulated with 3 inches on insulation with thermal resistance R = 2 hr-ft2-F/Btu per inch. The surface emissivity of the insulation is 0.70. Calculate convection,...
Saturated steam at 1 atm condenses on the outer surface of a vertical, 100-mm-diameter pipe 1...
Saturated steam at 1 atm condenses on the outer surface of a vertical, 100-mm-diameter pipe 1 m long, having a uniform surface temperature of 94 o C. Estimate the heat transfer rate to the pipe and the total condensation rate.
A concentric tube heat exchanger is comprised of a stainless steel (ks = 40 W/mK) inner...
A concentric tube heat exchanger is comprised of a stainless steel (ks = 40 W/mK) inner pipe, NPS 2- nominal schedule 40 size (corresponding to an inner diameter of 52.5 mm and an outer diameter of 60.3 mm), and an outer stainless steel pipe of NPS 3-nominal schedule 40 (ID = 77.9 mm, OD = 88.9 mm). The heat exchanger has an effective length of 35 m. The inner pipe fluid is ammonia (?a = 0.3 · 10?6 m2/s, cpa...
A 12 meter long and 12 mm inner diameter smooth pipe is used to heat a...
A 12 meter long and 12 mm inner diameter smooth pipe is used to heat a liquid in an industrial process. The liquid enters the pipe at a temperature of 25o C and a mean velocity of 0.80 m/s. A uniform heat flux is maintained by an electric resistance heater wrapped around the outer surface of the pipe so that the fluid exits at 75o C. The fluid average properties are ? = 1000 kg/m3 , Cp = 4000 J/kg·K,...
Hydraulic oil is flowing through a 80 mm diameter horizontal pipe with a flow rate of...
Hydraulic oil is flowing through a 80 mm diameter horizontal pipe with a flow rate of 1.5 litres per -3 second. At a certain point the diameter changes to 5 cm. Assume the oil’s density is 870 kg.m . (a) Calculate the velocity in SI units through the wider diameter section of the pipe. (b) Calculate the velocity in SI units through the narrower section of the pipe. (c) What is the pressure difference between the larger and smaller sections...
Steam at an average temperature of ?∞= 400°C flows through a steel pipe. The inner and...
Steam at an average temperature of ?∞= 400°C flows through a steel pipe. The inner and outer radii of the pipe are r1 = 4 cm and r2 = 4.5 cm, respectively, and the outer surface of the pipe is insulated with a layer of 50 mm thick-calcium silicate of thermal conductivity of k = 0.5 W/m.K, and is maintained at 350 °C. If the convection heat transfer coefficient on the inner surface of the pipe is h = 65...
A concentric tube heat exchanger is comprised of a stainless steel (ks = 40 W/mK) inner...
A concentric tube heat exchanger is comprised of a stainless steel (ks = 40 W/mK) inner pipe, NPS 2- nominal schedule 40 size (corresponding to an inner diameter of 52.5 mm and an outer diameter of 60.3 mm), and an outer stainless steel pipe of NPS 3-nominal schedule 40 (ID = 77.9 mm, OD = 88.9 mm). The heat exchanger has an effective length of 35 m. The inner pipe fluid is ammonia (va = 0.3 · 10-6m2/s, cpa =...
Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity...
Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity of 10 m/s and exits at 4.5 bar with a quality of 95%. Heat transfer from the pipe to the surroundings at 291K takes place at an average outer surface temperature of 400 K. For operation at steady state, determine (a) the velocity at the exit, in m/s. (b) the rate of heat transfer from the pipe, in kW.? (c) the rate of entropy...
Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity...
Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity of 10 m/s and exits at 4.5 bar with a quality of 95%. Heat transfer from the pipe to the surroundings at 291K takes place at an average outer surface temperature of 400 K. For operation at steady state, determine (a) the velocity at the exit, in m/s. (b) the rate of heat transfer from the pipe, in kW.? (c) the rate of entropy...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT