Question

Analyze a Gas turbine engine at a design speed under the following data employing a ...

Analyze a Gas turbine engine at a design speed under the following data employing a  separate power turbine, heat exchanger, reheater and intercooler between two-stage  compression.  Efficiency of compression in each stage: 85%  Isentropic efficiency of compressor turbine: 90%  Isentropic efficiency of power turbine: 85%  Transmission efficiency: 98%  Pressure ratio in each stage of compression: 2:1  Pressure loss in intercooler: 0.07 bar  Temperature after intercooling: 300 K  Thermal ratio of heat exchanger: 0.75  Pressure loss in combustion chamber: 0.15bar  Combustion efficiency of reheater: 98%  Maximum cycle temperature: 1000 K  Temperature after reheating: 1000 K  Air mass flow: 25 kg/s  Ambient air temperature: 15 °C  Ambient air pressure: 1 barTake the calorific value of fuel as 42 MJ/kg and pressure loss in each side of heat  exchanger as 0.1 bar. Find the net power output overall thermal efficiency, specific  fuel consumption. Neglect the kinetic energy of the gases leaving the system

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
It is desired to an alyze the performacne of a gas turbine engine operating on a...
It is desired to an alyze the performacne of a gas turbine engine operating on a Bratyon cycle with a free power turbine. The engine is under test at static conditions with an ambient temperature of 20'C and pressure of 1atm. The pressure ratio of the compressor is 5. The engine burnsmethane fuel with a heat of combustion of 50MJ/kg. The air to fuel ratio (AF) is 45. Assume the pressure at the inlet to the compressor is equal to...
A gas turbine power plant operates on a Brayton cycles has a pressure ratio of 7....
A gas turbine power plant operates on a Brayton cycles has a pressure ratio of 7. Air enters the compressor at 300 K. The energy in the form of heat is transferred to the air in the amount of 950 kJ/kg. Using a variable specific heat for air and assuming the compressor isentropic efficiency is 83 percent and turbine isentropic efficiency is 85 percent. Determine the followings: (i) The highest temperature in the cycle (ii) The net work output, in...
A turbojet engine is fitted to an aircraft flying at M = 0.85 in conditions where...
A turbojet engine is fitted to an aircraft flying at M = 0.85 in conditions where the ambient temperature is 216 K and the ambient pressure is 18.75 kPa. You are to assume adiabatic flow and isentropic conditions. The following data on the engine are known: Compressor pressure ratio ?? = 12 Combustion chamber efficiency ?? = 1 Turbine Inlet temperature ?4 = 1796 ? Calculate: a) The total temperature and pressure at entry to the compressor. (6 Marks) b)...
A diesel engine is fitted with a turbocharger. The engine is tested at constant speed of...
A diesel engine is fitted with a turbocharger. The engine is tested at constant speed of 500 r.p.m at atmospherie conditions of I bar and 27 C, the power output is 7000 kW, bmep is 15 bars and fuel consumption is 1250 kg/h an air intake manifold pressure is 2.3 bars, exhaust manifold pressure is 1.8 bars, and turbine inlet gas temperature is 670 C and leave the turbine a pressure of 1 bar. The volumetric efficiency of the engine...
A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a...
A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a propeller as well as the compressor. Air enters the diffuser with a volumetric flow rate of 63.7 m3/s at 40 kPa, 240 K, and a velocity of 180 m/s, and decelerates essentially to zero velocity. The compressor pressure ratio is 10 and the compressor has an isentropic efficiency of 85%. The turbine inlet temperature is 1240 K, and its isentropic efficiency is 85%. The...
An open cycle gas turbine using a regenration arrangement. The air enters the compressor at 1...
An open cycle gas turbine using a regenration arrangement. The air enters the compressor at 1 bar 288 K and is compressed to 10 bar with compressor effieciency= 0.85. The air is heated in regenerator and then enter in combustion chamber its temperature is raised ny 1700 k and during the process the pressure falls by 0.2 bar. The air is then expanded in the turbine and passes to regenerator which has 0.75 effectiveness and cause a pressure drop of...
Q1. An ideal jet engine with a compressor, combustion chamber, turbine and converging nozzle was held...
Q1. An ideal jet engine with a compressor, combustion chamber, turbine and converging nozzle was held stationary during an experiment to measure thrust in a laboratory. The turbine is used to drive the compressor. The atmospheric pressure and room temperature in the laboratory is measured as 102 kPa and 283 K. The gauge pressure at compressor exit is measured as 0.0781 bar and the inlet air flow is 10.4414 l/s. The maximum temperature reached in the jet engine is measured...
Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60...
Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60 m3/s at 0.8 bar, 280 K. The compressor pressure ratio is 17.5, and the maximum cycle temperature is 1950 K. For the compressor, the isentropic efficiency is 92% and for the turbine the isentropic efficiency is 95%. Determine: (a) the net power developed, in kW. (b) the rate of heat addition in the combustor, in kW. (c) the percent thermal efficiency of the cycle.
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has a pressure ratio of 7. Air enters the compressor at 15 ºC at a rate of 10 kg/s and the gas turbine at 950 ºC. The bottoming cycle is a reheat Rankine cycle between the pressure limits of 6 MPa and 10 kPa. Steam is heated in a heat exchanger at a rate of 1.15 kg/s by the exhaust gases leaving the gas turbine,...
A single shaft gas turbine engine receives air at atmospheric conditions of 14.7 psia and 80...
A single shaft gas turbine engine receives air at atmospheric conditions of 14.7 psia and 80 degrees F. The compressor discharge pressure is 103psia and the compressor efficiency is 87%. The turbine inlet temperature is 1980 degrees F and the exhaust temperature is 1173 degrees F. Assume a 3 psi pressure drop in the combustion chamber and that inlet and exhaust ducts losses are both 27.7 inches of water. Find: a) Sketch the system and label the state point locations...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT