Question

A gas turbine power plant which will be powered by a heat source having a temperature...

A gas turbine power plant which will be powered by a heat source having a
temperature of at least 840·C is to be designed with a pressure ratio of 4.
Regeneration is to be incorporated into the power piant design and it is expected
that the regenerator effectiveness will be at least 90%. It is intended that the
working fluid will enter the compressor at 100 kPa and 15°C. Using air-standard
cycle analysis, calculate the minimum thermal efficiency of the power plant.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An open cycle gas turbine using a regenration arrangement. The air enters the compressor at 1...
An open cycle gas turbine using a regenration arrangement. The air enters the compressor at 1 bar 288 K and is compressed to 10 bar with compressor effieciency= 0.85. The air is heated in regenerator and then enter in combustion chamber its temperature is raised ny 1700 k and during the process the pressure falls by 0.2 bar. The air is then expanded in the turbine and passes to regenerator which has 0.75 effectiveness and cause a pressure drop of...
A gas turbine power plant operates on a Brayton cycles has a pressure ratio of 7....
A gas turbine power plant operates on a Brayton cycles has a pressure ratio of 7. Air enters the compressor at 300 K. The energy in the form of heat is transferred to the air in the amount of 950 kJ/kg. Using a variable specific heat for air and assuming the compressor isentropic efficiency is 83 percent and turbine isentropic efficiency is 85 percent. Determine the followings: (i) The highest temperature in the cycle (ii) The net work output, in...
A small gas turbine has a pressure ratio of 9.5, and compressor efficiency of 88%. Overall...
A small gas turbine has a pressure ratio of 9.5, and compressor efficiency of 88%. Overall thermal efficiency is 37%. Ambient conditions are 27oC, 1 bar. Air leaving the compressor passes through a regenerator where it is heated by the exhaust gases leaving the turbine. If the maximum temperature in the cycle is 1300oC and the exhaust gases leave the turbine at 700oC, calculate the effectiveness of the regenerator, giving your answer to the nearest integer percentage. Use standard aircycle...
A simple gas turbine plant working on the ideal constant pressure cycle. Air is taken into...
A simple gas turbine plant working on the ideal constant pressure cycle. Air is taken into the compressor at 1 bar, 20.2 deg C and delivered at 7.2 bar. If the temperature at the turbine inlet is 765 deg C. Calculate the ideal thermal efficiency.
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has a pressure ratio of 7. Air enters the compressor at 15 ºC at a rate of 10 kg/s and the gas turbine at 950 ºC. The bottoming cycle is a reheat Rankine cycle between the pressure limits of 6 MPa and 10 kPa. Steam is heated in a heat exchanger at a rate of 1.15 kg/s by the exhaust gases leaving the gas turbine,...
An air-standard Brayton cycle has a compressor pressure ratio of 10. Air enters the compressor at...
An air-standard Brayton cycle has a compressor pressure ratio of 10. Air enters the compressor at p1 = 14.7 lbf/in.2, T1 = 70°F, with a mass flow rate of 90,000 lb/h. The turbine inlet temperature is 1800°R. Calculate the thermal efficiency and the net power developed, in horsepower, if (a) the turbine and compressor isentropic efficiencies are each 100%. % hp (b) the turbine and compressor isentropic efficiencies are 88 and 84%, respectively. % hp (c) the turbine and compressor...
Analyze a Gas turbine engine at a design speed under the following data employing a ...
Analyze a Gas turbine engine at a design speed under the following data employing a  separate power turbine, heat exchanger, reheater and intercooler between two-stage  compression.  Efficiency of compression in each stage: 85%  Isentropic efficiency of compressor turbine: 90%  Isentropic efficiency of power turbine: 85%  Transmission efficiency: 98%  Pressure ratio in each stage of compression: 2:1  Pressure loss in intercooler: 0.07 bar  Temperature after intercooling: 300 K  Thermal ratio of...
Consider a steam power plant which operates on the Rankine cycle. The pressures in the boiler...
Consider a steam power plant which operates on the Rankine cycle. The pressures in the boiler and the condenser are 5000 kPa and 40 kPa, respectively. The temperatures at the inlet of the turbine and at the inlet of the pump are 500oC and 70oC, respectively. The isentropic efficiency of the turbine is 94 percent, pressure and pump losses are negligible. If the mass flow rate of steam is 10 kg/s. Determine (a) the heat transfer rate in the boiler,...
Air enters the compressor of a simple gas turbine at p1 = 14 lbf/in2, T1 =...
Air enters the compressor of a simple gas turbine at p1 = 14 lbf/in2, T1 = 520°R. The isentropic efficiencies of the compressor and turbine are 83 and 87%, respectively. The compressor pressure ratio is 16 and the temperature at the turbine inlet is 2500°R. The volumetric flow rate of the air entering the compressor is 9000 ft3/min. Use an air-standard analysis. Determine all temperatures at each state. A) Determine the net power developed, in Btu/h. (Already did this part,...
Steam enters the turbine of an ideal Rankine cycle power plant with a pressure of 12.5...
Steam enters the turbine of an ideal Rankine cycle power plant with a pressure of 12.5 MPa and a temperature of 600°C and expands adiabatically to condenser pressure equal to 30 kPa . Please answer the following: a. Represent the cycle on a T-s diagram, indicate the values of the isobars and temperature and entropy on the axes. b. Compute the thermal efficiency for this cycle.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT