Question

In a steam plant operating according to an ideal Rankine cycle, water vapor enters the turbine...

In a steam plant operating according to an ideal Rankine cycle, water vapor enters the turbine at 3.0 MPa pressure and 600 oC temperature and exits the turbine with 100 kPa and 0.8 degree of dryness. Heat is thrown from the condenser to the surrounding environment and the water is provided to be saturated liquid at 100 kPa. In this case, what is the amount of heat from the Condenser to the surrounding environment for the unit mass?

be quıck

Homework Answers

Answer #1

In this problem, we use steam table for calculation of enthalpy which is required at the entry and the exit of condenser to find the required heat exchange with the environment per unit mass.

Comment of any query.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a steam plant operating according to an ideal Rankine cycle, water vapor enters the turbine...
In a steam plant operating according to an ideal Rankine cycle, water vapor enters the turbine at 3.0 MPa pressure and 600 oC temperature and exits the turbine with 100 kPa and 0.8 degree of dryness. Heat is thrown from the condenser to the surrounding environment and the water is provided to be saturated liquid at 100 kPa. So what is the net turbine job for the unit mass? be quıck
Steam enters the turbine of an ideal Rankine cycle power plant with a pressure of 12.5...
Steam enters the turbine of an ideal Rankine cycle power plant with a pressure of 12.5 MPa and a temperature of 600°C and expands adiabatically to condenser pressure equal to 30 kPa . Please answer the following: a. Represent the cycle on a T-s diagram, indicate the values of the isobars and temperature and entropy on the axes. b. Compute the thermal efficiency for this cycle.
"Steam is in steady state flow through an ideal Rankine Cycle with a single pump and...
"Steam is in steady state flow through an ideal Rankine Cycle with a single pump and turbine. The steam enters the turbine, at State 1, as saturated vapor at 2 MPa. The condenser is at 10 kPa and discharges saturated liquid at State 3. A) Find the cycle efficiency B) Find the back work ratio" Please show all the work you can! Thank you in advance
Water is the working fluid in a Rankine cycle with reheat. Superheated vapor enters the turbine...
Water is the working fluid in a Rankine cycle with reheat. Superheated vapor enters the turbine at 10 MPa, 520°C, and the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 520°C. The pump and each turbine stage have an isentropic efficiency of 70%. Determine for the cycle: (a) the heat addition, in kJ per kg of steam entering the first-stage turbine. (b) the percent thermal efficiency. (c) the magnitude...
Water vapor enters a turbine operating in a Rankine cylinder at 5000 kPa and 600 °...
Water vapor enters a turbine operating in a Rankine cylinder at 5000 kPa and 600 ° C and exits at 30 kPa. Calculate the thermal efficiency of the plant and the steam quality at the turbine outlet?
A steam power plant runs on a reheat Rankine cycle. Steam enters both the high and...
A steam power plant runs on a reheat Rankine cycle. Steam enters both the high and low pressure turbines at 500oC. The maximum and minimum pressures of the cycle are 10 MPa and 10 kPa, respectively. Steam leaves the condenser as a saturated liquid. The moisture content of the steam at the exit of the low-pressure turbine is 4% if the actual expansion process is adiabatic; 8.5% if the ideal expansion process is isentropic. The isentropic efficiencies of the high-pressure...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 7.5 kPa. a.)Determine the quality of the steam at the turbine exit. Use steam tables. b.)Determine the thermal efficiency of the cycle. c.)Determine the mass flow rate of the steam
A power plant using an ideal Rankine power generation cycle operates at an efficiency of 55%...
A power plant using an ideal Rankine power generation cycle operates at an efficiency of 55% with a flowrate of steam of 2 kg/s.  Heat is supplied to the boiler of 2500 kJ/kg. The pump takes in saturated liquid water at 100 kPa and has an exit pressure of 10 MPa.  Determine: the exit temperature of the pump (oC)  (3 pts) the work of the turbine (kW) (3 pts) the heat exhausted from the condenser (kJ/s) (3 pts)
A steam power plant of 15 MW operates on the simple ideal Rankine cycle such that...
A steam power plant of 15 MW operates on the simple ideal Rankine cycle such that the water leaves the condenser as a saturated liquid at a pressure of 15 kPa. The pressure of the water leaving the pump is 5.0 MPa, and the temperature of the steam entering the turbine is 650 ºC. (a) Show the sketch and cycle on a T-s diagram. Determine (b) the thermal efficiency of the cycle and (c) the mass flow rate in kg/s....
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 7.5 kPa. Determine the quality of the steam at the turbine exit. Use steam tables. (You must provide an answer before moving on to the next part.) a.)The quality of the steam at the turbine exit is? b.)Determine the thermal efficiency of the cycle.The thermal efficiency of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT