Question

Please find the correct option.(A-B-C-D) In a steam power plant with a net power of 30...

Please find the correct option.(A-B-C-D)

In a steam power plant with a net power of 30 MW and operating according to the ideal Rankine cycle, the steam enters the turbine at 10MPa and 500 ° C and is condensed in a condenser at a pressure of 10 kPa. Find the thermal efficiency of the cycle.

A-) 15 %
B-) 34 %
C-) 20 %
D-) 40 %

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 7.5 kPa. a.)Determine the quality of the steam at the turbine exit. Use steam tables. b.)Determine the thermal efficiency of the cycle. c.)Determine the mass flow rate of the steam
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 7.5 kPa. Determine the quality of the steam at the turbine exit. Use steam tables. (You must provide an answer before moving on to the next part.) a.)The quality of the steam at the turbine exit is? b.)Determine the thermal efficiency of the cycle.The thermal efficiency of...
Steam enters the turbine of an ideal Rankine cycle power plant with a pressure of 12.5...
Steam enters the turbine of an ideal Rankine cycle power plant with a pressure of 12.5 MPa and a temperature of 600°C and expands adiabatically to condenser pressure equal to 30 kPa . Please answer the following: a. Represent the cycle on a T-s diagram, indicate the values of the isobars and temperature and entropy on the axes. b. Compute the thermal efficiency for this cycle.
In a steam power plant which has a net power output of 45 MW, steam is...
In a steam power plant which has a net power output of 45 MW, steam is supplied at 10 MPa and 500°C. The steam is reheated after passing through high pressure turbine to its original temperature at a pressure of 1 MPa. Then the steam expanded to condenser pressure. The condenser pressure is 5 kPa. Show the cycle on a T-s diagram with respect to saturation lines, and determine; (i) the thermal efficiency of the cycle; and (ii) the mass...
A steam power plant of 15 MW operates on the simple ideal Rankine cycle such that...
A steam power plant of 15 MW operates on the simple ideal Rankine cycle such that the water leaves the condenser as a saturated liquid at a pressure of 15 kPa. The pressure of the water leaving the pump is 5.0 MPa, and the temperature of the steam entering the turbine is 650 ºC. (a) Show the sketch and cycle on a T-s diagram. Determine (b) the thermal efficiency of the cycle and (c) the mass flow rate in kg/s....
A steam power plant runs on a reheat Rankine cycle. Steam enters both the high and...
A steam power plant runs on a reheat Rankine cycle. Steam enters both the high and low pressure turbines at 500oC. The maximum and minimum pressures of the cycle are 10 MPa and 10 kPa, respectively. Steam leaves the condenser as a saturated liquid. The moisture content of the steam at the exit of the low-pressure turbine is 4% if the actual expansion process is adiabatic; 8.5% if the ideal expansion process is isentropic. The isentropic efficiencies of the high-pressure...
Consider a steam power plant which operates on the Rankine cycle. The pressures in the boiler...
Consider a steam power plant which operates on the Rankine cycle. The pressures in the boiler and the condenser are 5000 kPa and 40 kPa, respectively. The temperatures at the inlet of the turbine and at the inlet of the pump are 500oC and 70oC, respectively. The isentropic efficiency of the turbine is 94 percent, pressure and pump losses are negligible. If the mass flow rate of steam is 10 kg/s. Determine (a) the heat transfer rate in the boiler,...
QUESTION 5 A steam power plant is designed to operate on a reheat Rankine cycle to...
QUESTION 5 A steam power plant is designed to operate on a reheat Rankine cycle to produce 115 MW of a net power output. Due to metallurgical limitation, the high-pressure turbine is limited to operate at maximum pressure and temperature of 15 MPa and 650°C, respectively. The lowpressure turbine is to operate at maximum pressure and temperature of 3.5 MPa, and 500°C, respectively. Both high and low pressure turbines have maximum isentropic efficiency of 87 percent. The maximum reheat pressure...
Steam power plants are responsible for the production of most electric power in the world. A...
Steam power plants are responsible for the production of most electric power in the world. A small increase in thermal efficiency can mean large savings from the fuel requirements. Consider a steam power plant that operates on a simple ideal Rankine cycle. Steam is cooled in the condenser at a pressure of 75 kPa by running cooling water at 16°C from the nearby river through the tubes of the condenser. To increase the thermal efficiency of the power cycle, a...
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam...
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage at 12 MPa, 560°C and expands to 1 MPa, where some of the steam is extracted and diverted to the open feedwater heater operating at 1 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 17 kPa. Saturated liquid exits the open feedwater heater at 1 MPa. The net power output for the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT