Question

ROUND UP TO 4 DECIMAL PLACES. Draw and label the P-V & T-S diagrams. An ideal...

ROUND UP TO 4 DECIMAL PLACES. Draw and label the P-V & T-S diagrams.

An ideal air-standard Otto cycle engine has a compression ratio of 9. At the beginning of the compression process, the air is at 100 kPa, 27°C and 960 kJ/kg heat is supplied to the system. Determine the (a) Temperature and Pressure at each state, (b) Net work (kJ/kg), and (c) Efficiency

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected 2) An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected. 11)An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the pressure...
An ideal Otto engine has a compression ratio of 10 and uses air as the working...
An ideal Otto engine has a compression ratio of 10 and uses air as the working fluid. The state of air at the beginning of the compression process is 100 kPa and 27 0C. The maximum temperature in the cycle is 2100K. (R=0.287 for air) (using variable specific heat) Draw the P-v diagram of the Otto cycle Determine the specific internal energies at the beginning and the end of the compression, Determine the specific internal energies before and after the...
In case your selection was a gasoline engine, evaluate the performance of a four-cylinder four-stroke engine...
In case your selection was a gasoline engine, evaluate the performance of a four-cylinder four-stroke engine that operates on the ideal Otto cycle and has a compression ratio of 11. At the beginning of the compression process, the air is at 90 kPa and 27°C, and 500 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Accounting for the variation of specific heats of air with temperature, determine the required power the engine will deliver at 3000...
Consider an ideal Ericsson cycle with air as the working fluid executed in a steady-flow system....
Consider an ideal Ericsson cycle with air as the working fluid executed in a steady-flow system. Air is at 27°C and 110 kPa at the beginning of the isothermal compression process, during which 150 kJ/kg of heat is rejected. Heat transfer to air occurs at 950 K. The gas constant of air is R = 0.287 kJ/kg·K. a.)The maximum pressure in the cycle is? kPa b.)The net work output per unit mass of air is? kJ/kg c.)The thermal efficiency of...
An ideal Diesel cycle has a cut off ratio of 2. The temperature of the air...
An ideal Diesel cycle has a cut off ratio of 2. The temperature of the air at the beginning and at the end of the compression process are 300 K and 900 K respectively. By utilizing constant specific heats, taking the specific heat ratio, k = 1.4, Cp = 1.005 kJ/kg K and Cv = 0.718 kJ/kg K. Determine the followings: (i) The compression ratio. [5 marks] (ii) The maximum cycle temperature. [5 marks] (iii) The amount of heat transferred...
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar...
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar and T1 = 300 K. The compression ratio is 6 and the heat addition per unit mass of air is 1500 kJ/kg. Determine: (a) the maximum temperature of the cycle, in K. (b) the net work, in kJ/kg. (c) the percent thermal efficiency of the cycle. (d) the mean effective pressure, in kPa.
1) A nozzle is a device for increasing the velocity of a steadily flowing stream of...
1) A nozzle is a device for increasing the velocity of a steadily flowing stream of fluid. At the inlet to a certain nozzle the enthalpy of the fluid is 3025 kJ/kg and the velocity is 60 m/s. At the exit from the nozzle the enthalpy is 2790 kJ/kg. The nozzle is horizontal and there is negligible heat loss from it. (i) Find the velocity at the nozzle exit. (ii) If the inlet area is 0.1 m2 and specific volume...
In an ideal standard dual cycle, the pressure and temperature at the beginning of compression are...
In an ideal standard dual cycle, the pressure and temperature at the beginning of compression are 1 bar and 47°C, respectively. The heat supplied in the cycle is 1250kJ/kg, two third of this heat is being added at constant volume and the remaining heat is added at constant pressure. If the compression ratio is 16, determine 1)the maximum temperature in the cycle. 2)the thermal efficiency of the cycle. 3)the mean effective pressure.
Please find the correct option.(A-B-C-D) The compression ratio of an ideal air operated otto cycle is...
Please find the correct option.(A-B-C-D) The compression ratio of an ideal air operated otto cycle is 8. The lowest and highest temperatures of the cycle are 27 degrees Celsius and 1340K respectively. What is the heat that enters its cycle, taking into account the change of specific temperatures with temperature? A-) 268 kj/kg B-) 568 kj/kg C-) 486 kj/kg D-) 688 kj/kg
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT