Question

A process fluid having a specific heat of 3500 J/kg?K and flowing at 2 kg/s is...

A process fluid having a specific heat of 3500 J/kg?K and flowing at 2 kg/s is to be cooled from 80 °C to 40 °C with chilled water, which is supplied at a temperature of 15 °C and a flow rate of 2.5 kg/s. Assuming an overall heat transfer coefficient of 2000 W/m2?K, calculate the required heat transfer areas for the following exchanger configurations: (a) Parallel flow; (b) Counter flow; (c) a 1-2 shell and tube exchanger with the water on the shell side, (d) a 2-4 shell and tube exchanger with water on the shell side.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The fluid in a heat exchanger in a process plant needs to be warmed up prior...
The fluid in a heat exchanger in a process plant needs to be warmed up prior to having process startup. The shell side of the heat exchanger contains the process fluid (water) while the tube side is supplied with steam at 150°C to facilitate the heating. Assume the exterior is well insulated such that heat losses are negligible. a) Derive the ODE and analytically solve for the function that describes the temperature of the fluid in the heat exchanger with...
A sugar solution (? = 1080 kg/m3, cp = 3601 J/kg ? K, kf = 0.5764...
A sugar solution (? = 1080 kg/m3, cp = 3601 J/kg ? K, kf = 0.5764 W/m ? K, ? = 1.3 × 10–3 N ? s/m2) flows at rate of 60,000 kg/hr and is to be heated from 25°C to 50°C. Water at 95°C is available at a flow rate of 75,000 kg/hr (cp = 4004 J/kg ? K). It is proposed to use a one shell pass and two tubes pass shell-and-tube heat exchanger containing 3/4 in. OD,...
Hot oil at a rate of 5 kg/s (Cpm= 2 kJ/kg. K) enters in a 2-4...
Hot oil at a rate of 5 kg/s (Cpm= 2 kJ/kg. K) enters in a 2-4 shell and tube heat exchanger at 366 K and is cooled to 344 K by 2 kg/s of water (Cpm= 4 kJ/kg. K) entering at 283 K. The overall heat transfer coefficient U0 is 340 W/m . Calculate the area requied. If the length of each tube is 1.2 m, and the diameter of each tube is 0.1 m, calculate the number of tubes?
Water at a flow rate of 60 kg/s enters the shell-side of a baffled shell-and-tube heat...
Water at a flow rate of 60 kg/s enters the shell-side of a baffled shell-and-tube heat exchanger at 35 °C and leaves at 25 °C. The heat will be transferred to 150 kg/s of raw water coming from a supply at 15 °C. You are requested to design the heat exchanger for this purpose. A single shell and single tube pass is preferable. The tube diameter is ¾ in. (19 mm outer diameter with 16 mm inner diameter) and tubes...
A hot fluid of specific heat 4100 J/kg K flows through a parallel flow heat exchanger...
A hot fluid of specific heat 4100 J/kg K flows through a parallel flow heat exchanger at the rate of 3.5 kg/min with an inlet temp. of 105C. A cold fluid of specific heat 2350 J/kg K flows in at a rate of 9 kg/min and with inlet temperature 25C. Make calculations for maximum possible effectiveness if the fluid flow conforms to parallel flow arrangement.
Saturated water vapor leaves a steam turbine at a flow rate of 1.47 kg/s and a...
Saturated water vapor leaves a steam turbine at a flow rate of 1.47 kg/s and a pressure of 0.51 bar. The vapor is to be completely condensed to saturated liquid in a shell-and-tube heat exchanger that uses city water as the cold fluid. The water enters the thin-walled tubes at 17oC and is to leave at 57.6 oC. Assuming an overall heat transfer coefficient of 2000 W/m2K, determine the required heat exchanger surface area and the water flow rate. cp,c...
A 1-shell-2-tube pass heat exchanger is made of a steel alloy (thermal conductivity 45.4 W/(m K)....
A 1-shell-2-tube pass heat exchanger is made of a steel alloy (thermal conductivity 45.4 W/(m K). It is used to cool distilled water from 34oC to 29oC using water which flows inside tubes with an outer diameter of 19 mm and an inner diameter of 16 mm. The number of tubes in the shell is 160 (80 per pass). The mass flow rate of distilled water in the shell is 76180 kg/h. The cold water enters the heat exchanger at...
A 1 shell pass, 4 tube pass shell-and-tube heat exchanger is used to cool therminol 59...
A 1 shell pass, 4 tube pass shell-and-tube heat exchanger is used to cool therminol 59 in a refinery. The therminol 59 enters the tubes at a mass flow rate of 0.87 kg/s and changes in temperature from 93◦C to 49◦C. Water is the other fluid. It enters the shell at a mass flow rate of 1.20 kg/s, and changes in temeperture from 23◦C to 37.1◦C. Determine the following: (a) (10 pts) The heat transfer between the two fluids (b)...
A complex medium needs to be heated from 15°C to 37°C prior to use in mammalian...
A complex medium needs to be heated from 15°C to 37°C prior to use in mammalian cell culture. You are responsible for deciding the type of heat exchanger to adopt to achieve this heating. You are considering using a doublepipe heat exchanger with either co-current or counter-current flow. The medium flows through the inner tube and hot water enters the outer annulus at 80°C. You are given the following data: Cell culture medium: Mass flowrate = 2 kg s-1 Specific...
A heat exchanger uses oil (cp = 1880 J kg-1 K-1) at an initial temperature of...
A heat exchanger uses oil (cp = 1880 J kg-1 K-1) at an initial temperature of 205°C to heat up water with heat capacity of 1 kcal kg-1 K-1, and density = 0.998 g cm-3, flowing at 0.00376 m3 min-1 from 16°C to 44°C. The configuration of the heat exchanger is in countercurrent. The oil mass flow rate is 270 kg h-1. (1 cal = 4.18 J) (i)        What is the heat transfer area required for an overall heat transfer...