Question

A geothermal heat pump is used in winter for space heating by getting heat from the...

A geothermal heat pump is used in winter for space heating by getting heat from the ground at 15 °C. The working fluid in the heat pump is R134a. The compressor inlet is at 400 kPa and the compressor exit is at 2 MPa and 60 C. The mass flow rate of the refrigerant is 0.1 kg / s and the temperature difference in the air flow in the condenser section is 12 C. The refrigerant is subcooled to 15 C at the throttling valve inlet. The specific heat of water is 4200 /kgk and the specific heat of air is 1000 kJ /kg. Calculate

a . The compressor power
b . The refrigerant temperature at the hot water tank exit
c . The evaporator cooling load
d . The condenser heat rate
e. The air mass flow rate
f. The compressor isentropic efficiency

Homework Answers

Answer #1

A thumbs up, pls !!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Refrigerant 134a is the working fluid in a vapor-compression heat pump system with a heating capacity...
Refrigerant 134a is the working fluid in a vapor-compression heat pump system with a heating capacity of 60,000 Btu/h. The condenser operates at 240 lbf/in.2, and the evaporator temperature is 0°F. The refrigerant is a saturated vapor at the evaporator exit and a liquid at 110°F at the condenser exit. Pressure drops in the flows through the evaporator and condenser are negligible. The compression process is adiabatic, and the temperature at the compressor exit is 180°F. Determine (a) the mass...
Refrigerant 134a is the working fluid in a vapor-compression heat pump that provides 35 kW to...
Refrigerant 134a is the working fluid in a vapor-compression heat pump that provides 35 kW to heat a dwelling on a day when the outside temperature is below freezing. Saturated vapor enters the compressor at 2.6 bar, and saturated liquid exits the condenser, which operates at 8 bar. Determine for an isentropic compressor efficiency of 85%: (a) the refrigerant mass flow rate, in kg/s. (b) the magnitude of the compressor power, in kW. (c) the coefficient of performance.
Consider a single-stage refrigeration system operating between the pressure limits of 1.4 MPa and 160 kPa...
Consider a single-stage refrigeration system operating between the pressure limits of 1.4 MPa and 160 kPa with refrigerant R134a as the working fluid. The refrigerant is a saturated liquid at the condenser exit and a saturated vapor at the compressor inlet. The isentropic efficiency for the compressor is 80 percent. If the mass flow rate of the refrigerant through the cycle is 0.11 kg/s determine (a) the rate of heat removal from the refrigerated space, and (b) the coefficient of...
A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space...
A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at −30°C by rejecting its waste heat to cooling water that enters the condenser at 18°C at a rate of 0.32 kg/s and leaves at 26°C. The refrigerant enters the condenser at 1.2 MPa and 65°C and leaves at 42°C. The inlet state of the compressor is 60 kPa and −34°C and the compressor is estimated to gain a net heat of 460 W...
- a vapour-compression air-conditioning cycle where the compressor has an isentropic efficiency of 75%. Refrigerant (R12)...
- a vapour-compression air-conditioning cycle where the compressor has an isentropic efficiency of 75%. Refrigerant (R12) is used as the working fluid with a mass now rate of 0.04kg/s. saturated vapour eaters the compressor at 0.5 MPa and leaves to the condenser at 1.2IMPa. The air-conditioner cools down the station to 26°C through an evaporator, and rejects heat to the 34°C ambient through a condenser. (a) Sketch and label the schematic of the air-conditioning cycle and its T-S and P-h...
Consider a commercial refrigerator which operates on the refrigeration cycle. R- 134a is used as the...
Consider a commercial refrigerator which operates on the refrigeration cycle. R- 134a is used as the working uid and the refrigerated space is kept at -25oC by rejecting its waste heat to cooling water that enters the condenser at room temperature, that is 20oC, at a rate of 0.1 kg/s and leaves at 40oC. The refrigerant enters the condenser at 1.2 MPa and 70oC and leaves at 40oC. The inlet state of the compressor is saturated vapor at 100 kPa...
A commercial refrigerator with refrigerant R-134a as the working fluid is used to keep the refrigerated...
A commercial refrigerator with refrigerant R-134a as the working fluid is used to keep the refrigerated space at -30 C by rejecting its waste heat to cooling water that enters the condenser at 18 C at a rate of 0.25 kg/s and leaves at 26 C. The refrigerant enters the condenser at 1.2 MPa and 65 C and leaves at 42 C. The inlet state of the compressor is 60 kPa and -34 C and the compressor is estimated to...
A condenser is essentially a type of heat exchanger that is used to remove heat from...
A condenser is essentially a type of heat exchanger that is used to remove heat from a vapor and convert it to liquid. The picture below shows a condenser that is used in a commercial refrigerator with refrigerant-134a as the working fluid. Water enters the condenser at 18ºC at a rate of 0.25 kg/s and leaves at 26ºC. The refrigerant enters the condenser at 1.2 MPa and 50ºC and leaves at the same pressure but at T=41.3ºC. a) Find the...
Increasing the temperature of the heat addition (T subscript H) in any heat engine cycle, with...
Increasing the temperature of the heat addition (T subscript H) in any heat engine cycle, with keeping all other parameters unchanged: A. None of the answers. B. Decreases the heat added at high temperature. C. Increases the thermal efficiency of the cycle. D. Decreases the thermal efficiency of the cycle. 1 points    QUESTION 2 The maximum thermal efficiency of the Rankine cycle power plant is achieved when: A. it works on Carnot heat engine cycle. B. the pump work...
A heat pump using refrigerant-134a heats a house by using underground water at 8°C as the...
A heat pump using refrigerant-134a heats a house by using underground water at 8°C as the heat source. The house is losing heat at a rate of 64000 kJ/h. The refrigerant enters the compressor at 240 kPa and 0°C and leaves at 1.4 MPa and 80°C. The refrigerant exits the condenser at 34°C. a.)Determine the power input to the heat pump. kW b.)Determine the rate of heat absorption from the water. kW c.)Determine the increase in electric power input if...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT