Question

The acceleration of a linear moving particle is given as ? = - (0.1 + sin...

The acceleration of a linear moving particle is given as ? = - (0.1 + sin (? / ?)).
m / s2
and the unit of s is m. In t seconds, when s = 0, b= 3.5 and v = 0.95 values are as in the table.

(I)When s = -1 m, the speed of the particle,

(ii) the position of the particle when the speed is the maximum,

(iii) the particle
Calculate the maximum speed it has reached.

Homework Answers

Answer #1

A thumbs up, pls !!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The acceleration of a particle that moves linearly is given as ? = - (0.1 +...
The acceleration of a particle that moves linearly is given as ? = - (0.1 + sin⁡ (? / 0.75)). The unit of acceleration is m / s2 and the unit of s is m. In t seconds, when s = 0, b and v = 0.98 values ​​are as in the table. Calculate the velocity of the particle when (i) s = -1 m, (ii) the position of the particle when the velocity is maximum (iii) the maximum velocity...
The acceleration of a particle moving only on a horizontal xy plane is given by a→=3ti^+4tj^,...
The acceleration of a particle moving only on a horizontal xy plane is given by a→=3ti^+4tj^, where a→ is in meters per second-squared and t is in seconds. At t = 0, the position vector r→=(19.0m)i^+(44.0m)j^ locates the particle, which then has the velocity vector v→=(5.40m/s)i^+(1.70m/s)j^. At t = 4.10 s, what are (a) its position vector in unit-vector notation and (b) the angle between its direction of travel and the positive direction of the x axis?
The position of a particle is given in cm by x = (2) cos 6πt, where...
The position of a particle is given in cm by x = (2) cos 6πt, where t is in seconds. (a) Find the maximum speed. m/s (b) Find the maximum acceleration of the particle. m/s2 (c) What is the first time that the particle is at x = 0 and moving in the +x direction? s
The position of a particle is given in cm by x = (9) cos 5πt, where...
The position of a particle is given in cm by x = (9) cos 5πt, where t is in seconds. (a) Find the maximum speed. .... m/s (b) Find the maximum acceleration of the particle. .... m/s2 (c) What is the first time that the particle is at x = 0 and moving in the +x direction? ..... s
A particle is moving along a straight line and has acceleration given by a(t) = 20t^3+12t^2}....
A particle is moving along a straight line and has acceleration given by a(t) = 20t^3+12t^2}. Its initial velocity is v( 0 ) = 4 m / s and its initial displacement is s( 0 ) = 5 m. Find the position of the particle at t = 1 seconds.
The position of a particle is given in cm by x = (2) cos 9?t, where...
The position of a particle is given in cm by x = (2) cos 9?t, where t is in seconds. (a) Find the maximum speed. 0.565 m/s (b) Find the maximum acceleration of the particle. _______m/s2 (c) What is the first time that the particle is at x = 0 and moving in the +x direction? _______s
Consider a particle moving through space with velocity v(t) = cos(t)i−sin(t)j + tk. (i) (3 marks)...
Consider a particle moving through space with velocity v(t) = cos(t)i−sin(t)j + tk. (i) Determine its acceleration vector. (ii) Determine the position vector, supposing the particle starts at position (3,−2,3) at time t = 0.
A particle is moving according to the given data a(t) = sin t + 3 cos...
A particle is moving according to the given data a(t) = sin t + 3 cos t, x(0) = 0, v(0) = 2. where a(t) represents the acceleration of the particle at time t. Find v(t), the velocity of the particle at time t, and x(t), the position of the particle at time t.
A particle is moving along a straight line and has acceleration given by a(t) = 20t^3+12t^2}....
A particle is moving along a straight line and has acceleration given by a(t) = 20t^3+12t^2}. Its initial velocity is: v(0) = 4 m/ and its initial displacement is s(0) = 5 ms. Find the position of the particle at t = 1 seconds. 10  m 5  m 11  m 4  m 2m
The acceleration of a particle moving only on a horizontal xy plane is given by ModifyingAbove...
The acceleration of a particle moving only on a horizontal xy plane is given by ModifyingAbove a With right-arrow equals 4t ModifyingAbove i With caret plus 5t ModifyingAbove j With caret, where ModifyingAbove a With right-arrow is in meters per second-squared and t is in seconds. At t = 0, the position vector ModifyingAbove r With right-arrow equals left-parenthesis 24.0mright-parenthesis ModifyingAbove i With caret plus left-parenthesis 49.0mright-parenthesis ModifyingAbove j With caret locates the particle, which then has the velocity vector...