Question

In a coal fired power plant, a furnance Wall consists of a 125 mm wide refractory...

In a coal fired power plant, a furnance Wall consists of a 125 mm wide refractory brick and a 125 mm wide insulating firebrick separated by an air gap as shown in figure. The outside Wall is covered with a 12 mm thickness of plaster. The inner surface of Wall is at 1100 °C, and then room temp is 25 °C. The Heat transfer coefficient from the outside Wall surface to air in room is 17 W/m^2 K, resistance to heat flow of air gap is 0.16 K/W. The thermal conductivities of refractory brick, the insulating firebrick, and the plaster are 1.6, 0.3 and 0.14 W/m K, respectively. Calculate the rate of Heat loss per unit area of Wall surface.

Resistance per unit área

a) Rag = ? (Air gap)
b) Rrb = ? (Refractory brick)
c) Rfb = ? ( firebrick)
d) Rpl = ? (plaster)
e) Rconv = ? (convection)
f) Rtotal = ?
g) q = ?

Homework Answers

Answer #1

Drawing the thermal resistance circuit we can solve this problem as below-

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You want to limit the heat flux density (heat intensity) by a wall to 10 W...
You want to limit the heat flux density (heat intensity) by a wall to 10 W / (m2). The outside temperature is 4 ° C and the internal temperature 37 ◦C. How thick should a steel wall (λ = 17, 3 W / (m · K)) be to meet requirements? How thick must a mineral wool disk (λ = 0, 038 W / (m · K) be) to give the same greatest heat intensity? Disregard the heat transfer rates between...
The wall of an industrial furnace is constructed from a fireclay brick layer which is covered...
The wall of an industrial furnace is constructed from a fireclay brick layer which is covered with another layer of ordinary brick. The outer surface wall temperature has a steady-state temperature of 110 °C when the ambient air has a temperature of 20°C. Heat is lost from the outer surface wall via convection and radiation. The internal furnace wall has a surface temperature of 500 DegreeC. Convection heat transfer coefficient between outer wall and air: 5 W/m2K Stefan-Boltzmann constant σ:...
4. The wall of a house is 3 m high and 6 m wide, made of...
4. The wall of a house is 3 m high and 6 m wide, made of plywood (k = 0.11 J/(s•m•C°) 1.9 cm thick. The inside of the house is maintained at 72°F (22°C) by an air conditioning unit, while the outside is 88°F (31°C) in the middle of the day. A) What is the thermal resistance of the wall? B) How much heat passes through the wall in one hour? The wall is covered with a layer of fiberglass...
Select 1 m / s for a wall-illuminated 3 mm, inner 10 mm, 100 m long...
Select 1 m / s for a wall-illuminated 3 mm, inner 10 mm, 100 m long pipe, the incoming fluid entering 85 is cooled to 75 ℃. Apart from the pipe, there is a heat transfer coefficient of 7.8 W / m2.K and cross flowing water. a) Calculate the temperature before the fluid. b) Is the fluid flow laminar in the pipe? Is it turbulent? Why? c) Calculate the heat transfer coefficient between the fluid and the inner surface of...
16a) A triple glazed window consists of 3 clear glass panes of 4 mm thickness each,...
16a) A triple glazed window consists of 3 clear glass panes of 4 mm thickness each, separated by two air cavities of 13 mm each in thickness. The window area is 1.0 m2 . If the thermal conductivity of the glass panes is 0.8 W•m-1•K-1 and of the air cavities is 0.026 W•m-1•K-1 what is the total thermal resistance of the window? (A) 2.452 K•W-1 (B) 0.015 K•W-1 (C) 1.015 K•W-1 (D) 6004 K•W-1 16b)A heater provides 305 W of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT