Question

4-23 After heat treatment, the 2-cm thick metal plates (k = 180 W/m·K, ρ = 2800...

4-23 After heat treatment, the 2-cm thick metal plates (k = 180 W/m·K, ρ = 2800 kg/m3, and cp

= 880 J/kg·K) are conveyed through a cooling chamber with a length of 10 m. The plates enter the cooling

chamber at an initial temperature of 500°C. The cooling chamber maintains a temperature of 10°C, and

the convection heat transfer coefficient is given as a function of the air velocity blowing over the plates h

= 33V0.8, where h is in W/m2·K and V is in m/s. To prevent any incident of thermal burn, it is necessary

for the plates to exit the cooling chamber at a temperature below 50°C. In designing the cooling process to

meet this safety criteria, use excel to investigate the effect of the air velocity on the

temperature of the plates at the exit of the cooling chamber. Let the air velocity vary from 0 to 40 m/s, and

plot the temperatures of the plates exiting the cooling chamber as a function of air velocity at the moving

plate speed of 2, 5, and 8 cm/s.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
After heat treatment, the 2-cm thick metal plates (k = 180 W/m·K, ρ = 2800 kg/m3,...
After heat treatment, the 2-cm thick metal plates (k = 180 W/m·K, ρ = 2800 kg/m3, and cp = 880 J/kg·K) are conveyed through a cooling chamber with a length of 10 m. The plates enter the cooling chamber at an initial temperature of 500°C. The cooling chamber maintains a temperature of 10°C, and the convection heat transfer coefficient is given as a function of the air velocity blowing over the plates h = 33V0.8, where h is in W/m2·K...
1. A thick metal plate (alpha = 3.5 x 10-6 m2/s and k = 0.7 W/m-K),...
1. A thick metal plate (alpha = 3.5 x 10-6 m2/s and k = 0.7 W/m-K), initially at a uniform temperature of 100oC, is suddenly exposed to a convection environment of water at 20oC, giving a very large convection coefficient. a. Sketch the surface heat flux, q", as a function of time b. Using an explicit numerical scheme with a time step of 60 s, calculate the time required for the temperature to change 80 mm from the surface.
A 12 meter long and 12 mm inner diameter smooth pipe is used to heat a...
A 12 meter long and 12 mm inner diameter smooth pipe is used to heat a liquid in an industrial process. The liquid enters the pipe at a temperature of 25o C and a mean velocity of 0.80 m/s. A uniform heat flux is maintained by an electric resistance heater wrapped around the outer surface of the pipe so that the fluid exits at 75o C. The fluid average properties are ? = 1000 kg/m3 , Cp = 4000 J/kg·K,...
A long 8-cm-diameter steam pipe whose external surface temperature is 90°C passes through some open area...
A long 8-cm-diameter steam pipe whose external surface temperature is 90°C passes through some open area that is not protected against the winds. Determine the rate of heat loss from the pipe per unit of its length when the air is at 1 atm pressure and 7°C and the wind is blowing across the pipe at a velocity of 47 km/h. The properties of air at 1 atm and the film temperature of (Ts + T∞)/2 = (90 + 7)/2...
Homework-9 Due: Q) A fuel plate is fabricated from 0.3 cm thick 1.5% enriched uranium. The...
Homework-9 Due: Q) A fuel plate is fabricated from 0.3 cm thick 1.5% enriched uranium. The cladding is 0.25 mm 304 stainless steel. The coolant saturation temperature is 260 oC. The average thermal neutron flux is 2.5 X 1014 neutrons/cm2 /s. The surface temperature of the clad is 350 oC. Assume any missing data to answer the following questions:. 1) Write an expression of the heat generated per unit volume 2 What is the heat flux at the surface of...
Assume that we are working with an aluminum alloy (k = 180 W/moC) triangular fin with...
Assume that we are working with an aluminum alloy (k = 180 W/moC) triangular fin with a length, L = 5 cm, base thickness, b = 1 cm, a very large width, w = 1 m. The base of the fin is maintained at a temperature of T0 = 200oC (at the left boundary node). The fin is losing heat to the surrounding air/medium at T? = 25oC with a heat transfer coefficient of h = 15 W/m2oC. Using the...
1. An oven chimney is made of brick with a heat transmission coefficient 1.1 W/mK 10...
1. An oven chimney is made of brick with a heat transmission coefficient 1.1 W/mK 10 cm thick. Since the shaft exterior radiation beam coefficient is 0.8 and the flue gas temperature is 350°C, the external ambient temperature is 25°C and the outer ambient heat transport coefficient is 20 W/m2K; a) Calculate the shaft exterior temperature. b) In order to reduce the risk of burn injury that may occur in the body, the shaft is asked to be below 55°Cve...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT