4-23 After heat treatment, the 2-cm thick metal plates (k = 180 W/m·K, ρ = 2800 kg/m3, and cp
= 880 J/kg·K) are conveyed through a cooling chamber with a length of 10 m. The plates enter the cooling
chamber at an initial temperature of 500°C. The cooling chamber maintains a temperature of 10°C, and
the convection heat transfer coefficient is given as a function of the air velocity blowing over the plates h
= 33V0.8, where h is in W/m2·K and V is in m/s. To prevent any incident of thermal burn, it is necessary
for the plates to exit the cooling chamber at a temperature below 50°C. In designing the cooling process to
meet this safety criteria, use excel to investigate the effect of the air velocity on the
temperature of the plates at the exit of the cooling chamber. Let the air velocity vary from 0 to 40 m/s, and
plot the temperatures of the plates exiting the cooling chamber as a function of air velocity at the moving
plate speed of 2, 5, and 8 cm/s.
Get Answers For Free
Most questions answered within 1 hours.