Question

Water enters an insulated compressor at a volumetric flowrate of 600 ft3 /min. It enters as...

Water enters an insulated compressor at a volumetric flowrate of 600 ft3 /min. It enters as a saturated vapor at 30 psi, and exits at 200 psi and 700 oF. Assuming an irreversible process while neglecting kinetic and potential energy effects, determine: (40 pts) i) Entropy production rate (Btu/s oR) ii) Actual power input (Btu/s) iii) Isentropic compressor efficiency

Homework Answers

Answer #1

A thumbs up, pls !!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Air enters a compressor operating at steady state at 15.4 lbf/in^2, 80°F with a volumetric flow...
Air enters a compressor operating at steady state at 15.4 lbf/in^2, 80°F with a volumetric flow rate of 424 ft^3/min and exits at 176.4 lbf/in^2, 260°F. Heat transfer occurs at a rate of 6800 Btu/h from the compressor to its surroundings. Assuming the ideal gas model for air and neglecting kinetic and potential energy effects, determine the power input, in hp.
Saturated water vapor at 300°F enters a compressor operating at steady state with a mass flow...
Saturated water vapor at 300°F enters a compressor operating at steady state with a mass flow rate of 5 lb/s and is compressed adiabatically to 550 lbf/in.2 If the power input is 2150 hp, determine for the compressor: (a) the percent isentropic compressor efficiency and (b) the rate of entropy production, in hp/°R. Ignore kinetic and potential energy effects.
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -12oC with...
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -12oC with a volumetric flow rate of 0.18 m3/s. Refrigerant exits at 9 bar, 70oC. Changes in kinetic and potential energy from inlet to exit can be ignored. Determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kW.
4.58 Air enters a compressor operating at steady state with a pressure of 14.7 lbf/in^2, a...
4.58 Air enters a compressor operating at steady state with a pressure of 14.7 lbf/in^2, a temperature of 808 F, and a volumetric flow rate of 18 ft /s. The air exits the compressor at a pressure of 90 lbf/in^2 Heat transfer from the compressor to its surroundings occurs at a rate of 9.7 Btu per lb of air flowing. The compressor power input is 90 hp. Neglecting kinetic and potential energy effects and modeling air as an ideal gas,...
Carbon dioxide enters an adiabatic compressor at100 kPa and 300 K at a rate of 0.5...
Carbon dioxide enters an adiabatic compressor at100 kPa and 300 K at a rate of 0.5 kg/s and exits at 600 kPa and 450 K. Neglecting the kinetic energy changes, determine the isentropic efficiency of the compressor. Assume constant specific heats. please show all the work and how you got it please and thank you
Air enters the compressor of a simple gas turbine at p1 = 14 lbf/in2, T1 =...
Air enters the compressor of a simple gas turbine at p1 = 14 lbf/in2, T1 = 520°R. The isentropic efficiencies of the compressor and turbine are 83 and 87%, respectively. The compressor pressure ratio is 16 and the temperature at the turbine inlet is 2500°R. The volumetric flow rate of the air entering the compressor is 9000 ft3/min. Use an air-standard analysis. Determine all temperatures at each state. A) Determine the net power developed, in Btu/h. (Already did this part,...
Steam at 6 MPA, 600°C, enters a well-insulated turbine operating at steady state and exits at...
Steam at 6 MPA, 600°C, enters a well-insulated turbine operating at steady state and exits at 0.1 bar. The isentropic efficiency of the turbine is 94.7%. Assuming the kinetic and potential energy effects to be negligible, determine: (a) Work output, in kJ/kg, (b) The temperature at the exit of the turbine, in °C, and (c) The rate of entropy production within the turbine, in kJ/K per kg of steam flowing through the turbine. (All steps required – Given/Find/Schematic/Engineering Model/Analysis) THANK...
Problem 6.100 SI Carbon dioxide (CO2) at 1 bar, 300 K enters a compressor operating at...
Problem 6.100 SI Carbon dioxide (CO2) at 1 bar, 300 K enters a compressor operating at steady state and is compressed adiabatically to an exit state of 10 bar, 590 K. The CO2 is modeled as an ideal gas, and kinetic and potential energy effects are negligible. For the compressor, determine: (a) the work input, in kJ per kg of CO2 flowing, (b) the rate of entropy production, in kJ/K per kg of CO2 flowing, and (c) the percent isentropic...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 2 bar, and saturated liquid exits the condenser at 8 bar. The isentropic compressor efficiency is 80%. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the compressor power, in kW, (b) the refrigeration capacity, in tons, (1 ton = 3.5168 kW) and, (c) the coefficient of performance, (d) rate of entropy production in kW/K, for the...
- a vapour-compression air-conditioning cycle where the compressor has an isentropic efficiency of 75%. Refrigerant (R12)...
- a vapour-compression air-conditioning cycle where the compressor has an isentropic efficiency of 75%. Refrigerant (R12) is used as the working fluid with a mass now rate of 0.04kg/s. saturated vapour eaters the compressor at 0.5 MPa and leaves to the condenser at 1.2IMPa. The air-conditioner cools down the station to 26°C through an evaporator, and rejects heat to the 34°C ambient through a condenser. (a) Sketch and label the schematic of the air-conditioning cycle and its T-S and P-h...