Question

In a steam power plant which has a net power output of 45 MW, steam is...

In a steam power plant which has a net power output of 45 MW, steam is supplied at 10 MPa and 500°C. The steam is reheated after passing through high pressure turbine to its original temperature at a pressure of 1 MPa. Then the steam expanded to condenser pressure. The condenser pressure is 5 kPa. Show the cycle on a T-s diagram with respect to saturation lines, and determine; (i) the thermal efficiency of the cycle; and (ii) the mass flow rate of the steam.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a cogeneration power plant that is modified with reheat and that produces 3 MW of...
Consider a cogeneration power plant that is modified with reheat and that produces 3 MW of power and supplies 7 MW of process heat. Steam enters the high pressure turbine at 8 MPa and 500 C and expands to a pressure of 1 MPa. At this pressure, part of the steam is extracted from the turbine and routed to the process heater, while the remainder is reheated to 500 C and expanded in the low pressure turbine to the condenser...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 7.5 kPa. a.)Determine the quality of the steam at the turbine exit. Use steam tables. b.)Determine the thermal efficiency of the cycle. c.)Determine the mass flow rate of the steam
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 7.5 kPa. Determine the quality of the steam at the turbine exit. Use steam tables. (You must provide an answer before moving on to the next part.) a.)The quality of the steam at the turbine exit is? b.)Determine the thermal efficiency of the cycle.The thermal efficiency of...
A steam power plant of 15 MW operates on the simple ideal Rankine cycle such that...
A steam power plant of 15 MW operates on the simple ideal Rankine cycle such that the water leaves the condenser as a saturated liquid at a pressure of 15 kPa. The pressure of the water leaving the pump is 5.0 MPa, and the temperature of the steam entering the turbine is 650 ºC. (a) Show the sketch and cycle on a T-s diagram. Determine (b) the thermal efficiency of the cycle and (c) the mass flow rate in kg/s....
QUESTION 5 A steam power plant is designed to operate on a reheat Rankine cycle to...
QUESTION 5 A steam power plant is designed to operate on a reheat Rankine cycle to produce 115 MW of a net power output. Due to metallurgical limitation, the high-pressure turbine is limited to operate at maximum pressure and temperature of 15 MPa and 650°C, respectively. The lowpressure turbine is to operate at maximum pressure and temperature of 3.5 MPa, and 500°C, respectively. Both high and low pressure turbines have maximum isentropic efficiency of 87 percent. The maximum reheat pressure...
Consider a power plant operating on a Rankine cycle using steam as the working fluid. The...
Consider a power plant operating on a Rankine cycle using steam as the working fluid. The boiler pressure is 2.8 MPa and the steam leaving the boiler is superheated to a temperature 110 0C above its saturation temperature. The condenser temperature is 49 0C. Condenser discharges saturates liquid. The efficiency of the turbine is 0.90 and of the pump 0.8 as compared to reversible and adiabatic machines operating at the same pressure ranges. a) Sketch the cycle on a T-S...
Please find the correct option.(A-B-C-D) In a steam power plant with a net power of 30...
Please find the correct option.(A-B-C-D) In a steam power plant with a net power of 30 MW and operating according to the ideal Rankine cycle, the steam enters the turbine at 10MPa and 500 ° C and is condensed in a condenser at a pressure of 10 kPa. Find the thermal efficiency of the cycle. A-) 15 % B-) 34 % C-) 20 % D-) 40 %
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam...
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage at 12 MPa, 560°C and expands to 1 MPa, where some of the steam is extracted and diverted to the open feedwater heater operating at 1 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 17 kPa. Saturated liquid exits the open feedwater heater at 1 MPa. The net power output for the...
Steam enters the turbine of an ideal Rankine cycle power plant with a pressure of 12.5...
Steam enters the turbine of an ideal Rankine cycle power plant with a pressure of 12.5 MPa and a temperature of 600°C and expands adiabatically to condenser pressure equal to 30 kPa . Please answer the following: a. Represent the cycle on a T-s diagram, indicate the values of the isobars and temperature and entropy on the axes. b. Compute the thermal efficiency for this cycle.
A steam power plant is designed to operate on a reheat Rankine cycle to produce 115...
A steam power plant is designed to operate on a reheat Rankine cycle to produce 115 MW of a net power output. Due to metallurgical limitation, the high-pressure turbine is limited to operate at maximum pressure and temperature of 15 MPa and 650°C, respectively. The low-pressure turbine is to operate at maximum pressure and temperature of 3.5 MPa, and 500°C, respectively. Both high and low pressure turbines have maximum isentropic efficiency of 87 percent. The maximum reheat pressure is limited...