Question

Consider a surface of area 26 m2 at which the convection and radiation heat transfer coefficients...

Consider a surface of area 26 m2 at which the convection and radiation heat transfer coefficients are 13.05 W/m2·K and 20.39 W/m2·K, respectively. Assume the medium and the surrounding surfaces are at the same temperature. Determine the single equivalent heat transfer coefficient (in W/m2·K). (Round the final answer to two decimal places.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a person whose exposed surface area is 1.7 m2, emissivity is 0.9, and surface temperature...
Consider a person whose exposed surface area is 1.7 m2, emissivity is 0.9, and surface temperature is 32°C. Determine the total rate of heat loss from that person by radiation and convection in a large room having walls at a temperature of 18oC. The convective heat transfer coefficient is 5 W/m2.K
For a body, the convection heat transfer coefficient to the adjacent air is 33 W/(m2.°C), and...
For a body, the convection heat transfer coefficient to the adjacent air is 33 W/(m2.°C), and the radiative heat transfer coefficient from this body to another body is 36 W/(m2.°C). If the temperature of the first body and the adjacent air is 188 °C and 22 °C, respectively, determine the temperature of the second body so that the heat transferred by convection is equal in magnitude to the heat transferred by radiation
What is the heat flux (W/m2) to an object when subjected to convection heat transfer environment...
What is the heat flux (W/m2) to an object when subjected to convection heat transfer environment given: 24 °C = the surface temperature of the object, 82 °C = the bulk temperature of the fluid adjacent to the object, and the convection heat transfer coefficient = 49 W/(m^2 K)? Question 1: a. 3201 b. 2842 c. 1234 d. 2531
Determine the total rate of heat transfer from a person standing in a breezy room at...
Determine the total rate of heat transfer from a person standing in a breezy room at 20 ̊C if the exposed surface area and the average outer surface temperature of the person are 1.2 m2 and 29 ̊C, respectively, and the convection heat transfer coefficient is 5 W/(m2- ̊C). The Stefan-Boltzmann constant is 5.67 x 10-8 W/(m2- K4) and human skin emissivity is 0.95.
A hot black painted pipe(2.54-cmO.D.and50-mlong)passesthrougha 20°C room to heat it. The temperature of the pipe surface...
A hot black painted pipe(2.54-cmO.D.and50-mlong)passesthrougha 20°C room to heat it. The temperature of the pipe surface is 150°C. If the heat transfer coefficient by convection to the air is 10 W/m2-K : a) What is the total heat rate loss? b) What is the radiation heat transfer coefficient? c) At what temperature of the pipe, the heat rate by convection equals the heat rate by radiation.
Consider a cube of density, specific heat, and thermal conductivity of 2700 kg/m3, 0.896 kJ/kg-K, and...
Consider a cube of density, specific heat, and thermal conductivity of 2700 kg/m3, 0.896 kJ/kg-K, and 204 W/m-K, respectively. The cube is 5 cm in length, and is initially at a temperature of 20 oC. For t>0, two of the boundary surfaces are insulated, two are subjected to uniform heating at a rate of 10,000 W/m2, and two dissipate heat by convection to an ambient temperature of 20 oC, with a heat transfer coefficient of 50 W/m2-K. Assuming lumped capacitance...
71 mm thick horizontal plate made of an opaque material of thermal conductivity k= 25 W/m-K....
71 mm thick horizontal plate made of an opaque material of thermal conductivity k= 25 W/m-K. At the bottom, water flows at a temperature of T∞,w = 25C, whereas air flows at the top of the plate at T∞,a = 710 C having convection coefficient of ha= 71 W/m2-K. Assuming a diffused top of the plate that receives an irradiated flux of 7100W/m2, of which 30% is reflected back. The top and bottom surface temperatures are maintained at 43 C...
Determine the hydrodynamic and thermal entry lengths as well as the convection heat transfer coefficient for...
Determine the hydrodynamic and thermal entry lengths as well as the convection heat transfer coefficient for the flow of (a) air and (b) water at a velocity of 2 m/s in an 8 cm diameter and 7 m long tube when the tube is subjected to a uniform heat flux from all surfaces. Use fluid properties at 300 K.
It's a heat transfer question. A stainless steel fin with a constant base temperature (900K) and...
It's a heat transfer question. A stainless steel fin with a constant base temperature (900K) and with an insulated end. Apply convection at all cylindrical surfaces except the base and the tip. The convection coefficient, h = 50 W/(m2·K), and fluid temperature of T∞ = 300K. Plot the temperature distribution along the center axis line (T vs x). Include a contour plot across the cross section of the fin. Assume zero contact resistance between the sections. K=19.8W/m-k Cp=557J/Kg-K Rho= 7900Kg/m^3...
The heat flux, q, is 6000 W/m2 at the surface of an electrical resistance heater. The...
The heat flux, q, is 6000 W/m2 at the surface of an electrical resistance heater. The heater temperature is 120C when it is cooled by air at 70C. (a) What is the average convective heat transfer coefficient, ? (b) What will the heater temperature be if q is reduced to 2000 W/m2?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT