Question

Water flows through 80 km of HDPE (High Density Polyethylene) pipe having an outer diameter of...

Water flows through 80 km of HDPE (High Density Polyethylene) pipe having an outer diameter of 1600 mm and a wall thickness of 63 mm. If the volumetric flow is 75x106 metercube in a year, determine the head loss in the pipe due to friction.Take kinematic viscosity as ν = 1.33 X 10-6 m/s2

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A liquid of density 1.33 × 103 kg/m3 flows steadily through a pipe of varying diameter...
A liquid of density 1.33 × 103 kg/m3 flows steadily through a pipe of varying diameter and height. At location 1 along the pipe the flow speed is 9.15 m/s and the pipe diameter is 11.5 cm. At location 2 the pipe diameter is 17.3 cm. At location 1 the pipe is 9.89 m higher than it is at location 2. Ignoring viscosity, calculate the difference between the fluid pressure at location 2 and the fluid pressure at location 1.
1.) A liquid of density 1390 km/m^3 flows steadily through a pipe of varying diameter and...
1.) A liquid of density 1390 km/m^3 flows steadily through a pipe of varying diameter and height. At Location 1 along the pipe, the flow speed is 9.31 m/s and the pipe d1 diameter is 10.3cm . At Location 2, the pipe diameter d2 is 17.5 cm . At Location 1, the pipe is triangle y= 9.31m higher than it is at Location 2. Ignoring viscosity, calculate the difference between the fluid pressure at Location 2 and the fluid pressure...
A 250 mm diameter of cast iron pipe flows 39.3 L/s of SAE 10 oil along...
A 250 mm diameter of cast iron pipe flows 39.3 L/s of SAE 10 oil along 500 m length. Given: dynamic viscosity, μ and density, ρ of SAE 10 oil are 1.04 x 10-1 Ns/m2 and 917 kg/m3 respectively. By assuming the flow is laminar, determine energy head and pressure loss due to pipe friction using Hagen-Poiseuille equation and friction factor, f.
A liquid of density 1.19 × 103 kg/m3 flows steadily through a pipe of varying diameter...
A liquid of density 1.19 × 103 kg/m3 flows steadily through a pipe of varying diameter and height. At location 1 along the pipe the flow speed is 9.79 m/s and the pipe diameter is 10.7 cm. At location 2 the pipe diameter is 14.1 cm. At location 1 the pipe is 8.75 m higher than it is at location 2. Ignoring viscosity, calculate the difference between the fluid pressure at location 2 and the fluid pressure at location 1.
A liquid of density 1.37 × 103 kg/m3 flows steadily through a pipe of varying diameter...
A liquid of density 1.37 × 103 kg/m3 flows steadily through a pipe of varying diameter and height. At location 1 along the pipe the flow speed is 9.47 m/s and the pipe diameter is 11.1 cm. At location 2 the pipe diameter is 17.1 cm. At location 1 the pipe is 9.37 m higher than it is at location 2. Ignoring viscosity, calculate the difference between the fluid pressure at location 2 and the fluid pressure at location 1.
A liquid of density 1.13 × 103 kg/m3 flows steadily through a pipe of varying diameter...
A liquid of density 1.13 × 103 kg/m3 flows steadily through a pipe of varying diameter and height. At location 1 along the pipe the flow speed is 9.77 m/s and the pipe diameter is 11.3 cm. At location 2 the pipe diameter is 14.5 cm. At location 1 the pipe is 8.43 m higher than it is at location 2. Ignoring viscosity, calculate the difference between the fluid pressure at location 2 and the fluid pressure at location 1.
A liquid of density 1150 kg/m3 flows steadily through a pipe of varying diameter and height....
A liquid of density 1150 kg/m3 flows steadily through a pipe of varying diameter and height. At Location 1 along the pipe, the flow speed is 9.99 m/s and the pipe diameter ?1 is 12.3 cm . At Location 2, the pipe diameter ?2 is 17.9 cm . At Location 1, the pipe is Δ?=8.79 m higher than it is at Location 2. Ignoring viscosity, calculate the difference Δ? between the fluid pressure at Location 2 and the fluid pressure...
A liquid of density 1270 kg/m3 flows steadily through a pipe of varying diameter and height....
A liquid of density 1270 kg/m3 flows steadily through a pipe of varying diameter and height. At Location 1 along the pipe, the flow speed is 9.81 m/s and the pipe diameter d1 is 11.3 cm. At Location 2, the pipe diameter d2 is 17.1 cm. At Location 1, the pipe is Δy=9.59 m higher than it is at Location 2. Ignoring viscosity, calculate the difference ΔP in units of Pa between the fluid pressure at Location 2 and the...
A liquid of density 1370 kg/m3 flows steadily through a pipe of varying diameter and height....
A liquid of density 1370 kg/m3 flows steadily through a pipe of varying diameter and height. At Location 1 along the pipe, the flow speed is 9.51 m/s and the pipe diameter d1 is 11.9 cm. At Location 2, the pipe diameter d2 is 14.1 cm. At Location 1, the pipe is Δy=8.55 m higher than it is at Location 2. Ignoring viscosity, calculate the difference ΔP between the fluid pressure at Location 2 and the fluid pressure at Location...
Crude oil of density 925 kg/m3 and absolute viscosity 0,065 Ns/m2 at 20oC meter.is pumped through...
Crude oil of density 925 kg/m3 and absolute viscosity 0,065 Ns/m2 at 20oC meter.is pumped through a horizontal pipeline 100 mm in diameter at a rate of 10 L/s. Determine the head loss in each km of pipeline and the shear stress at the pipe wall. And explain the type of head loss and locations in the figure. Explain how you handled these losses at the solution.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT