Question

Consider the fully developed flow of glycerin at 40C Trough a 70m long, 4 cm diameter,...

Consider the fully developed flow of glycerin at 40C Trough a 70m long, 4 cm diameter, horizontal, circular pipe. if the flow velocity at the centerline is measured to be 6 m/s, determinate the velocity profile and the pressure difference across this 70m long section of the pipe, and the useful pumping power required to maintain this flow.

Homework Answers

Answer #1

The solution for the given problem has been attached below.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the flow of oil at 10?C in a 40-cm diameter pipeline at an average velocity...
Consider the flow of oil at 10?C in a 40-cm diameter pipeline at an average velocity of 0.5 m/s. A 1500-m long section of the pipeline passes through icy waters of a lake at 0?C. Disregarding the thermal resistance of the pipe material, determine (a) the temperature of the oil when the pipe leaves the lake (b) the rate of heat transfer from the oil and (c) the pressure losses in the pipe. Assume the flow is hydro-dynamically fully developed.
The wall shear stress in a fully developed flow portion of a 18-in.-diameter pipe carrying water...
The wall shear stress in a fully developed flow portion of a 18-in.-diameter pipe carrying water is 1.65 lb/ft2. Determine the pressure gradient, ∂p/∂x, where x is in the flow direction, if the pipe is (a) horizontal, (b) vertical with flow up, or (c) vertical with flow down.
A fluid with SG:0,888 and viscosity:0,8 Pa s flows in horizontal pipe of diameter:5 cm and...
A fluid with SG:0,888 and viscosity:0,8 Pa s flows in horizontal pipe of diameter:5 cm and length:40 m.The measured velocity profile is of parabolic shape.The amount of pressure difference between inlet and exist of the pipe is 648,76 kPa.Determine Reynolds number of flow if the pipe is inclined at an angle 30 degree with horizontal and flow is upward with the same pressure difference is applied                        
Consider a horizontal pipe in which a viscous fluid is moving at a laminar flow. The...
Consider a horizontal pipe in which a viscous fluid is moving at a laminar flow. The pressure drop across a 0.2-cm ID pipe was measured at 18,000 Pa/m. The fluid has a rho= 1110 kg/m3 and mu= 0.03 kg/m-s. Determine the equation that defines the velocity profile vz(r).Then, calculate the velocity at the center of the pipe (vzat r = 0 in m/s).
The water enters the two-story building through a horizontal pipe with an inner diameter 4 cm...
The water enters the two-story building through a horizontal pipe with an inner diameter 4 cm and the pressure of 10 atm. The velocity of the water flow in the pipe is 5 m/s. The horizontal pipe is connected to a vertical pipe which leads to bathrooms in each story. a) What is the velocity of the water flow in the vertical pipe if the diameter of the pipe is 2 cm. b) What is the pressure in the pipe...
Consider an internal flow through a circular tube. Assuming hydrodynamically fully developed condition, the velocity profile...
Consider an internal flow through a circular tube. Assuming hydrodynamically fully developed condition, the velocity profile is given as ??(??) = 2????????(1 ? ??^2/??^2 ). For constant surface heat flux case, a) Calculate NuD for thermally fully developed condition. b) Also, plot variations of tube surface temperature and mean fluid temperature along flow direction (x) including entry and fully developed region. c) Can you plot variation of convective heat transfer coefficient (h) along flow direction (x) including entry and fully...
1- Water flows in a 10 m long and 4 cm diameter pipe contains 4 elbows...
1- Water flows in a 10 m long and 4 cm diameter pipe contains 4 elbows ( KL= 0.2 ) at velocity 8 m/s. Calculate the total head losses when the friction factor f=0.03 35.56 m 22.07 m 27.07 m 15.46 m 2- water flows in a 10 m long and 5 cm diameter horizontal pipe at rate 15 l/s Calculate the pressure drop Take the density of water 1000 kg/m3 and the dynamic viscosity 0.001 kg/m.s 74.13 kPa 96.41...
Steam enters a long, horizontal pipe with an inlet diameter of d1 = 16 cm at...
Steam enters a long, horizontal pipe with an inlet diameter of d1 = 16 cm at 2 MPa and 300 degrees Celsius with a velocity of 2.5 m/s. Farther downstream, the conditions are 1.8 MPa and 250 degrees Celsius, and the diameter is d2 = 14 cm. Determine (a) the mass flow rate of the steam and (b) the rate of heat transfer.
Hydraulic oil is flowing through a 80 mm diameter horizontal pipe with a flow rate of...
Hydraulic oil is flowing through a 80 mm diameter horizontal pipe with a flow rate of 1.5 litres per -3 second. At a certain point the diameter changes to 5 cm. Assume the oil’s density is 870 kg.m . (a) Calculate the velocity in SI units through the wider diameter section of the pipe. (b) Calculate the velocity in SI units through the narrower section of the pipe. (c) What is the pressure difference between the larger and smaller sections...
A long 8-cm-diameter steam pipe whose external surface temperature is 90°C passes through some open area...
A long 8-cm-diameter steam pipe whose external surface temperature is 90°C passes through some open area that is not protected against the winds. Determine the rate of heat loss from the pipe per unit of its length when the air is at 1 atm pressure and 7°C and the wind is blowing across the pipe at a velocity of 47 km/h. The properties of air at 1 atm and the film temperature of (Ts + T∞)/2 = (90 + 7)/2...