Question

An air turbine with inlet conditions of 500 kPa, 327 C operates in steady flow and...

An air turbine with inlet conditions of 500 kPa, 327 C operates in steady flow and has an actual power output of 70 kW. The discharge pressure is 100 kPa and the turbine has an efficiency of 0.8 at these operating conditions. Consider specific heats constant.

a) Calculate the actual mass flow rate at the turbine exit.

b) Calculate the actual turbine exit temperature.

c) Show the actual and ideal processes on a T-s and P-v diagram.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
NO INTERPOLATION REQUIRED Air enters an adiabatic turbine at 1000 kPa and 1625 degrees C (state...
NO INTERPOLATION REQUIRED Air enters an adiabatic turbine at 1000 kPa and 1625 degrees C (state 1) with a mass flow rate of 5 kg/s and leaves at 100 kPa the isentropic efficiency of the turbine is 85%. Neglecting the kinetic energy change of the steam, and considering variable specific heats, determine: a. the isentropic power of the turbine Isentropic power in kW b. the temperature at the turbine exit temperature at exit in degrees C c. the actual power...
n ideal air-standard Brayton cycle operates at steady state with compressor inlet conditions of 290 K...
n ideal air-standard Brayton cycle operates at steady state with compressor inlet conditions of 290 K and 95 kPa and a fixed turbine inlet temperature of 1650 K. For a compressor pressure ratio of 10, determine: (a) the exhaust temperature of the cycle, in K. (b) the back work ratio. (c) the net work developed per unit mass flowing, in kJ/kg. (d) the heat addition per unit mass flowing, in kJ/kg. (e) the thermal efficiency for the cycle.
Air at 277 oC and 1000 kPa enters a turbine operating at steady state with a...
Air at 277 oC and 1000 kPa enters a turbine operating at steady state with a mass flow rate of 70 kg/hr. It exits the turbine at 27 oC and 700 kPa. During this process heat is added from the surroundings at 77 oC to the turbine at a rate of 1000 kJ/hr. Using variable specific heats, determine whether this claim is correct. Justify your answer.
A steam turbine has inlet steam pressure p1 = 1.4 MPa absolute. Inlet steam temperature is...
A steam turbine has inlet steam pressure p1 = 1.4 MPa absolute. Inlet steam temperature is T1 = 400 oC. This corresponds to inlet enthalpy per unit mass of h1 = 3121 kJ/kg. Exit pressure of the steam is p2 = 101 kPa absolute. Exit steam temperature is T2 = 100 oC. This corresponds to exit enthalpy per unit mass of h2 = 2676 kJ/kg. Inlet speed of the steam is V1 = 15 m/s and exit speed is V2...
22-1: A steam turbine is limited to a maximum inlet temperature of 800 C. The exhaust...
22-1: A steam turbine is limited to a maximum inlet temperature of 800 C. The exhaust pressure is .01 MPa and the moisture in the turbine exhaust is not to exceed 9%. Use EES along with an array table. a) What is the maximum allowable turbine inlet pressure if the flow is adiabatic and reversible (aka isentropic)? b) What is the specific work output given conditions of isentropic expansion? c) Starting with the same initial conditions, what are the actual...
An adiabatic gas turbine uses air to produce work. Air expands adiabatically from 600 kPa and...
An adiabatic gas turbine uses air to produce work. Air expands adiabatically from 600 kPa and 287 C to 90 kPa and 67 C. Take specific heats at room temperature (300 K). a) Find the isentropic efficiency of the turbine. b) Find the work produced by the turbine for a mass flow rate of 2.5 kg/s. c) If the mass flow rate of air is again 2.5 kg/s, find the entropy generation under steady conditions.
Air is expanded isentropically in an adiabatic turbine, to produce 115 kW of power. If the...
Air is expanded isentropically in an adiabatic turbine, to produce 115 kW of power. If the mass flow rate is 0.75 kg/s, and the air at the exit is 500 K and 155 kPa, then what is the temperature and pressure at the inlet of the turbine? (a) The temperature is? K (b) The pressure is? kPa NOTE: Do NOT approximate the air as having a constant specific heat.
A two-part compressor operates with steady state conditions. The exit of the first part of the...
A two-part compressor operates with steady state conditions. The exit of the first part of the compressor is also the inlet of the second part of the compressor. In the first part of the compressor, air is compressed from 1.5 bar, 350 K to 5.5 bar with a mass flow rate of 7.2 kg/sec. In the second part of the compressor, air is compressed from 5.5 bar to 9.5 bar with a mass flow rate of 5.8 kg/sec. Each unit...
Steam flows steadily through an adiabatic turbine. The inlet conditions are: 20 MPa, 500°C, 90 m/s...
Steam flows steadily through an adiabatic turbine. The inlet conditions are: 20 MPa, 500°C, 90 m/s and the exit conditions are 20 kPa, 95% quality, and 60 m/s. The mass flow rate of the steam is 15 kg/s. Find: a) The change in kinetic energy of the steam, (5 points) b) The power output, and (5 points) c) The turbine inlet area. (5 points)
An adiabatic compressor operates on air in a steady state process. The air enters the compressor...
An adiabatic compressor operates on air in a steady state process. The air enters the compressor at 25 oC and 150 kPa and exits at 250 oC and 500 kPa. Assuming constant specific heats for air at 300K, calculate the isentropic efficiency for this compressor.