Question

Boil a potato and get the center temperature close to 100C. Calculate the surface and center...

Boil a potato and get the center temperature close to 100C. Calculate the surface and center temperature as a function of time.

kwater= .6639 W/m*k

Cp= 866.9 J/kg*k

Rho= 933.7 kg/m^2

kpotato= .498 W/m*k

alpha(potato)= .13E-6 m^2/s

alpha(water)= 3.357E-6 m^2/s

Cpotato= 3.64 kJ/(kg*k)

We can't figure out how to find h

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
It's a heat transfer question. A stainless steel fin with a constant base temperature (900K) and...
It's a heat transfer question. A stainless steel fin with a constant base temperature (900K) and with an insulated end. Apply convection at all cylindrical surfaces except the base and the tip. The convection coefficient, h = 50 W/(m2·K), and fluid temperature of T∞ = 300K. Plot the temperature distribution along the center axis line (T vs x). Include a contour plot across the cross section of the fin. Assume zero contact resistance between the sections. K=19.8W/m-k Cp=557J/Kg-K Rho= 7900Kg/m^3...
The water in a 40-L tank is to be heated from 15°C to 45°C by a...
The water in a 40-L tank is to be heated from 15°C to 45°C by a 21-cm-diameter spherical heater whose surface temperature is maintained at 85°C. Determine how long the heater should be kept on. Given: The properties of air at 1 atm and the film temperature of 57.5°C. Fluid temperature = Average temperature for water (15+45)/2=30°C k = 0.6515 W/m.°C, v = 0.493 x 10-6 m2/s, Pr = 3.12, and ? = 0.501 x 10-3 K-1 The properties of...
Consider an R-134a based freezer operating at -30°C. The surrounding temperature is at 25°C. External size...
Consider an R-134a based freezer operating at -30°C. The surrounding temperature is at 25°C. External size of the freezer is 33.62" wide x 37.37" tall x 20.68" deep. Wall thickness of the freezer is 1" and made of polystyrene (thermal conductivity=.033 W/mK). Thermal conductivity of the wall is the same as polystyrene. For simplicity, you may assume the inner and outer convection coefficients of the freezer are both equal to 10 W/m2/K. The heat removal rate is: q(convection)=186.22 W The...
A long 10 cm × 20 cm rectangular cross section steel bar ݇ k= 63.9 W/mK...
A long 10 cm × 20 cm rectangular cross section steel bar ݇ k= 63.9 W/mK and alpha=18.8*10^-6 m^2 /s was heated to an initial temperature of 450°C. The steel bar is allowed to cool in a room with a temperature of 25°C and convection heat transfer coefficient of 25 W/m^2 K. The bottom surface of the bar is insulated while the other surfaces are exposed to convection. With a uniform nodal spacing of 5 cm, determine the duration required...
Water at 15°C enters a tube of 2 cm of diameter with flow rate 3953 kg/h....
Water at 15°C enters a tube of 2 cm of diameter with flow rate 3953 kg/h. Assume the ratio L/D>10, and the wall temperature is constant at 80-C. The outlet temperature is 50°C The properties of water at the film temperature are density rho = p = 985 kg/m3, specific heat Cp = 4180 J/kgk, conductivity k = 0.651 W/mK, dynamic viscosity mu= u = 4.71 × 10- kg/ms, At the wall temperature of 80°C we have dynamic viscosity muw=...
(a) Fluid at a mass flow rate of 0.352 kg/s flows through a tube with a...
(a) Fluid at a mass flow rate of 0.352 kg/s flows through a tube with a diameter of 15 mm and a length of 25 m. The inner surface of the tube is heated with a uniform heat flux of 1000 W/m2. Measurements shown that the inlet temperature of the fluid is 30 ˚C. Assume the outer surface of the tube is perfectly insulated. Consider the thermophysical properties of the fluid are as follows: density ρ = 1000 kg/m3, specific...
4-23 After heat treatment, the 2-cm thick metal plates (k = 180 W/m·K, ρ = 2800...
4-23 After heat treatment, the 2-cm thick metal plates (k = 180 W/m·K, ρ = 2800 kg/m3, and cp = 880 J/kg·K) are conveyed through a cooling chamber with a length of 10 m. The plates enter the cooling chamber at an initial temperature of 500°C. The cooling chamber maintains a temperature of 10°C, and the convection heat transfer coefficient is given as a function of the air velocity blowing over the plates h = 33V0.8, where h is in...
After heat treatment, the 2-cm thick metal plates (k = 180 W/m·K, ρ = 2800 kg/m3,...
After heat treatment, the 2-cm thick metal plates (k = 180 W/m·K, ρ = 2800 kg/m3, and cp = 880 J/kg·K) are conveyed through a cooling chamber with a length of 10 m. The plates enter the cooling chamber at an initial temperature of 500°C. The cooling chamber maintains a temperature of 10°C, and the convection heat transfer coefficient is given as a function of the air velocity blowing over the plates h = 33V0.8, where h is in W/m2·K...
1. The standard enthalpy of formation of phenol is -165.0 kJ/mol. Calculate its standard enthalpy of...
1. The standard enthalpy of formation of phenol is -165.0 kJ/mol. Calculate its standard enthalpy of combustion. [Express your answer in units of kilojoules per mole, kJ/mol] C6H5OH + 7O2 --> 6 CO2 + 3H2O ΔHc = 6ΔHf(CO2) + 3ΔHf(H2O) - ΔHf(C6H5OH) - 7ΔHf(O2) 2. Calculate the work done on a closed system consisting of 50.0 grams of argon, assumed ideal, when it expands isothermally and reversibly from a volume of 5.00 L to a volume of 10.00 L at...
Q. Unsteady conduction A large steel plate 0.02 m thick leaves a heat treating furnace at...
Q. Unsteady conduction A large steel plate 0.02 m thick leaves a heat treating furnace at 425 oC. And the plate is plunged into water (at 25 oC) and cooled from both sides. How long does it take for the maximum temperature to reach 65 oC? For steel plate: thermal conductivity, k=30 W/m·K, density ?=7600 kg/m3, heat capacity cp=700 J/kg·K. Heat transfer coefficients: h=6000 W/m2·K in water. Please use two methods to calculate this question: (1) Directly apply the exact...