Question

A particle moves with rectilinear motion and is defined by the relation v= t3-4t2+5t-6. Determine: I....

A particle moves with rectilinear motion and is defined by the relation v= t3-4t2+5t-6. Determine:

I. Times when acceleration is zero

II. Distance and acceleration when time is 2 seconds, given x0= 0

Hi sir i need this solution very urgent please can any expert or teacher can solve in 20 to 25 minutes can you please help me out with this its very urgent and i have limited time i shall be very thankful to you and thumbs up for you thanks

Homework Answers

Answer #1

Please Rate,

Thank You!!!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle moves according to a law of motion s = f(t), t ≥ 0, where...
A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. (If an answer does not exist, enter DNE.) f(t) = t3 − 8t2 + 23t (a) Find the velocity at time t. v(t) =    ft/s (b) What is the velocity after 1 second? v(1) =   ft/s (c) When is the particle at rest? (d) When is the particle moving in the positive direction? (Enter your...
A particle moves according to a law of motion s = f(t), t ≥ 0, where...
A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. (If an answer does not exist, enter DNE.) f(t) = t3 − 8t2 + 26t A. Find the acceleration at time t and after 1 second. a(t) = ft/s2 a(1) = ft/s2 B. When is the particle speeding up? (Enter your answer using interval notation.) c. When is it slowing down? (Enter your answer using...
A particle moves according to a law of motion s = f(t), t ≥ 0, where...
A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. (If an answer does not exist, enter DNE.) f(t) = t3 − 8t2 + 27t (a) Find the velocity at time t. v(t) = ft/s (b) What is the velocity after 1 second? v(1) = ft/s (c) When is the particle at rest? (d) When is the particle moving in the positive direction? (Enter your...
1-The velocity of a particle is v = { 6 i + ( 28 - 2...
1-The velocity of a particle is v = { 6 i + ( 28 - 2 t ) j } m/s, where t is in seconds. If r=0 when t=0, determine particle displacement during time interval t = 3 s to t = 8 s in the y direction. 2-A particle, originally at rest and located at point (1 ft, 4 ft, 5 ft), is subjected to an acceleration of a={ 3 t i + 17 t2k} ft/s. Determine magnitude...
A particle moves along the x axis. It is initially at the position 0.230 m, moving...
A particle moves along the x axis. It is initially at the position 0.230 m, moving with velocity 0.200 m/s and acceleration -0.420 m/s2. Suppose it moves with constant acceleration for 5.30 s. (a) Find the position of the particle after this time. m (b) Find its velocity at the end of this time interval. m/s We take the same particle and give it the same initial conditions as before. Instead of having a constant acceleration, it oscillates in simple...
A particle moves along the x axis. It is initially at the position 0.340 m, moving...
A particle moves along the x axis. It is initially at the position 0.340 m, moving with velocity 0.240 m/s and acceleration -0.350 m/s2. Suppose it moves with constant acceleration for 3.20 s. (a) Find the position of the particle after this time. m (b) Find its velocity at the end of this time interval.   m/s We take the same particle and give it the same initial conditions as before. Instead of having a constant acceleration, it oscillates in simple...
Please provide a brief overview on: chapter 21 1. Can I obtain the net electric field...
Please provide a brief overview on: chapter 21 1. Can I obtain the net electric field due to two or more point charges? 2. Can I obtain the net Coulomb force on a point charge due to two or more point charges? 3. Can I draw physical quantities (for example, velocity, forces or electric fields) involved in a given problem in a diagram? 4. Do I have a good "qualitative" understanding of the motion of a charged particle in a...