Question

Consider a single-stage refrigeration system operating between the pressure limits of 1.4 MPa and 160 kPa...

Consider a single-stage refrigeration system operating between the pressure limits of 1.4 MPa and 160 kPa 

with refrigerant R134a as the working fluid. The refrigerant is a saturated liquid at the condenser exit and a 

saturated vapor at the compressor inlet. The isentropic efficiency for the compressor is 80 percent. If the 

mass flow rate of the refrigerant through the cycle is 0.11 kg/s determine (a) the rate of heat removal from the 

refrigerated space, and (b) the coefficient of performance of this refrigerator. 

show the steps please

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A cooling plant adopted a two-stage cascade refrigeration system to meet the required cooling load. In...
A cooling plant adopted a two-stage cascade refrigeration system to meet the required cooling load. In both upper and lower cycles, the refrigerant leaves condenser as saturated liquid and enters compressor as saturated vapor. The isentropic efficiency of the upper cycle compressor is 80 %, while the lower cycle compressor is 70% efficient. The pressure limits of the upper and lower cycles are 1 MPa and 0.2 MPa with refrigerant-134a, respectively. Heat rejection from the lower cycle to the upper...
Consider a commercial refrigerator which operates on the refrigeration cycle. R- 134a is used as the...
Consider a commercial refrigerator which operates on the refrigeration cycle. R- 134a is used as the working uid and the refrigerated space is kept at -25oC by rejecting its waste heat to cooling water that enters the condenser at room temperature, that is 20oC, at a rate of 0.1 kg/s and leaves at 40oC. The refrigerant enters the condenser at 1.2 MPa and 70oC and leaves at 40oC. The inlet state of the compressor is saturated vapor at 100 kPa...
A two-stage cascade refrigeration system is shown below. The refrigerant is R134a. It consists of two...
A two-stage cascade refrigeration system is shown below. The refrigerant is R134a. It consists of two ideal vapor-compression cycles with heat exchange between the condenser of the lowertemperature cycle and the evaporator of the higher-temperature cycle. The hotter cycle operates between 0.7 MPa and 0.35 MPa, while the cooler cycle operates between 0.35 MPa and 0.12 MPa. If the flow rate in the hotter cycle is 0.5 mol/s, determine the following: What is the flow rate in the cooler cycle?...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 2 bar, and saturated liquid exits the condenser at 8 bar. The isentropic compressor efficiency is 80%. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the compressor power, in kW, (b) the refrigeration capacity, in tons, (1 ton = 3.5168 kW) and, (c) the coefficient of performance, (d) rate of entropy production in kW/K, for the...
Consider a 280 kJ/min refrigeration system that operates on an ideal vapor-compression refrigeration cycle with refrigerant-134a...
Consider a 280 kJ/min refrigeration system that operates on an ideal vapor-compression refrigeration cycle with refrigerant-134a as the working fluid. The refrigerant enters the compressor as saturated vapor at 140 kPa and is compressed to 800 kPa. The saturated refrigerant-134a—pressure table (in SI units) is given below. Determine the quality of the refrigerant at the end of the throttling process.
An ideal vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid....
An ideal vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 1 bar, and saturated liquid exits the condenser at 4 bar. The mass flow rate of refrigerant is 8.5 kg/min. Determine the compressor power, in kW.
- a vapour-compression air-conditioning cycle where the compressor has an isentropic efficiency of 75%. Refrigerant (R12)...
- a vapour-compression air-conditioning cycle where the compressor has an isentropic efficiency of 75%. Refrigerant (R12) is used as the working fluid with a mass now rate of 0.04kg/s. saturated vapour eaters the compressor at 0.5 MPa and leaves to the condenser at 1.2IMPa. The air-conditioner cools down the station to 26°C through an evaporator, and rejects heat to the 34°C ambient through a condenser. (a) Sketch and label the schematic of the air-conditioning cycle and its T-S and P-h...
A commercial refrigerator with refrigerant R-134a as the working fluid is used to keep the refrigerated...
A commercial refrigerator with refrigerant R-134a as the working fluid is used to keep the refrigerated space at -30 C by rejecting its waste heat to cooling water that enters the condenser at 18 C at a rate of 0.25 kg/s and leaves at 26 C. The refrigerant enters the condenser at 1.2 MPa and 65 C and leaves at 42 C. The inlet state of the compressor is 60 kPa and -34 C and the compressor is estimated to...
An idea vapor-compression refrigeration cycle, with refrigerant R-22 as the working fluid, has an evaporator temperature...
An idea vapor-compression refrigeration cycle, with refrigerant R-22 as the working fluid, has an evaporator temperature of -12 °C and a condenser pressure of 15 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The refrigerating capacity is 4 tons. a.Determine the compressor power (in kW). b.Determine the mass flow rate of the refrigerant (in kg/min). c.Determine the coefficient of performance.
R-134a enters the compressor of a refrigerator as superheated vapour at 0.14 MPa, -10 °C at...
R-134a enters the compressor of a refrigerator as superheated vapour at 0.14 MPa, -10 °C at a rate of 0.12 kg/s, and it leaves at 0.7 MPa and 50 °C. The refrigerant is cooled in the condenser to 24 °C and 0.65 MPa, and it is throttled to 0.15 MPa. Disregard any heat transfer and pressure drops in the connecting lines between the components. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT