Question

Consider a cold air-standard Diesel cycle. At the beginning of compression, 102 kPa, and 300 K. The mass of air is 0.120 kg, the compression ratio is 16, and the cut-off ratio is 2.0

For a cold air-standard analysis use the following values: cp = 1.005 kJ/kgK, cv = 0.718 kJ/kgK, k=1.40, M=28.97 kg/kmol.

Determine the following :

(a) pressure at end of compression stroke, in kPa

(b) temperature at end of compression stroke, in K

(c) maximum temperature in the cycle, in K

(d) pressure at end of power stroke, in K

(e) heat addition for the cycle, in kJ

(f) net work for the cycle, in kJ

(g) cycle thermal efficiency

(h) mean effective pressure, in kPa

Answer #1

1) An air-standard Otto cycle has a compression ratio of 9. At
the beginning of the compression process, the temperature is 20°C,
and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine
the cycle efficiency, work output, and the heat rejected
2) An air-standard Otto cycle operates with a minimum
temperature of 300 K and a maximum temperature of 1700 K. The
compression ratio of the cycle is 7. At the beginning of the
compression process, the...

10) An air-standard Otto cycle has a compression ratio of 9. At
the beginning of the compression process, the temperature is 20°C,
and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine
the cycle efficiency, work output, and the heat rejected.
11)An air-standard Otto cycle operates with a minimum
temperature of 300 K and a maximum temperature of 1700 K. The
compression ratio of the cycle is 7. At the beginning of the
compression process, the pressure...

At the beginning of the compression process of an air-standard
Diesel cycle operating with a compression ratio
of 20, the temperature is 350 K and the pressure is 0.15 MPa.
The cutoff ratio for the cycle is 1.5. Determine
(a) the temperature and pressure at the end of each process of
the cycle, (b) the thermal efficiency, (c) the mean
effective pressure, in MPa.

The compression ratio in an air-standard Otto cycle is 8. At the
beginning of the compression stroke the pressure is 14.7 lbf/in2
and the temperature is 600F. The heat transfer to the air during
the combustion process per cycle is 800 Btu/lbm. Determine: (a) The
pressure and temperature at the end of each process of the cycle.
(b) The thermal efficiency (use k = 1.4, Cv = 0.171 Btu/lbm
0F).

The compression ratio in an air-standard Otto cycle is 8. At the
beginning of the compression stroke the pressure is 14.7 lbf/in2
and the temperature is 600F. The heat transfer to the air during
the combustion process per cycle is 800 Btu/lbm. Determine: (a) The
pressure and temperature at the end of each process of the cycle.
(b) The thermal efficiency (use k = 1.4, Cv = 0.171 Btu/lbm
0F).

At the beginning of the compression process of an air-standard
Otto cycle, p1 = 1 bar and T1 = 300 K. The compression ratio is 6
and the heat addition per unit mass of air is 1500 kJ/kg.
Determine: (a) the maximum temperature of the cycle, in K. (b) the
net work, in kJ/kg. (c) the percent thermal efficiency of the
cycle. (d) the mean effective pressure, in kPa.

An air-standard Diesel cycle has a compression ratio of 16 and a
cutoff ratio of 2. At the beginning of the compression process, air
is at 95 kPa and 27°C. Accounting for the variation of specific
heats with temperature, determine the total irreversibility (or
lost work). Assume a source temperature is 2000 K and a sink
temperature is 300 K. Show solution step by step.

The compression ratio of an air-standard Diesel cycle is 17 and
the conditions at the beginning of compression are p1 = 14.0
lbf/in.2, V1 = 2 ft3, and T1 = 520°R. The maximum temperature in
the cycle is 4000°R. Calculate (a) the net work for the cycle, in
Btu. Btu (b) the thermal efficiency. % (c) the mean effective
pressure, in lbf/in.2 lbf/in.2 (d) the cutoff ratio.

A diesel engine operates at 3000 rpm on a standard Diesel cycle
has a compression ratio of 14. The state of air at the beginning of
the compression process is 98 kPa and 24 ?C. The maximum
temperature in the cycle is not exceed 1850 ?C. Assume diesel fuel
has a heating value of 45 MJ/kg. Use the PG model.
a) Determine the thermal efficiency.
b) Determine the specific fuel consumption. (kg/kJ)
c) What-if Scenario: What would the
thermal efficiency...

A Diesel cycle engine is analyzed using the air standard
method. Given the conditions at state 1, compression ratio
(r), and cutoff ratio (rc) determine the efficiency and other
values listed below.
Note: The gas constant for air is R=0.287 kJ/kg-K.
--Given Values--
T1 (K) = 322
P1 (kPa) = 120
r = 11.5
rc = 1.6
Specific internal energy (kJ/kg) at state 1: 229.86
Relative specific volume at state 1= 520.52
Relative specific volume at state 2= 45.26
Temperature...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 2 minutes ago

asked 2 minutes ago

asked 3 minutes ago

asked 10 minutes ago

asked 11 minutes ago

asked 11 minutes ago

asked 14 minutes ago

asked 14 minutes ago

asked 14 minutes ago

asked 14 minutes ago

asked 14 minutes ago

asked 14 minutes ago