Question

A rigid, well-insulated tank, with a volume of 0.057 m3 , contains air at p1 =...

A rigid, well-insulated tank, with a volume of 0.057 m3 , contains air at p1 = 1.4 bar, T1 = 280 K. The air is stirred by a paddle wheel, resulting in an energy transfer to the gas of magnitude 6.78 kJ. Assuming ideal gas behavior for the air, determine the final temperature, in K, and the final pressure, in bar. Neglect kinetic and potential energy effects

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Air is contained in a rigid, well-insulated container of volume 3 m3. The air undergoes a...
Air is contained in a rigid, well-insulated container of volume 3 m3. The air undergoes a process from an initial state with a pressure of 200 kPa and temperature of 300 K. During the process, the air receives 720 kJ of work from a paddle wheel. Model the air as an ideal gas with constant specific heats. Evaluate the specific heats at 300 K. Neglect changes in kinetic energy and potential energy. Determine the mass of the air in kg,...
A rigid copper tank, initially containing 1 m3 of air at 295 K, 4 bar, is...
A rigid copper tank, initially containing 1 m3 of air at 295 K, 4 bar, is connected by a valve to a large supply line carrying air at 295 K, 15 bar. The valve is opened only as long as required to fill the tank with air to a pressure of 15 bar. Finally, the air in the tank is at 310 K. The copper tank, which has a mass of 20 kg, is at the same temperature as the...
An initially empty, well insulated, rigid tank with a volume of 2 m3 is fitted with...
An initially empty, well insulated, rigid tank with a volume of 2 m3 is fitted with a mixing device. The tank has two inlets and zero outlets. One inlet is water at 1 MPa and 600◦C while the other is saturated liquid water. Both enter the tank slowly. If the amount of work done by the mixing device is 300 kJ, what must the temperature of the saturated liquid water be if the same mass is added through both inlets...
Air in a rigid tank is at 140 kPa, 300 K with a volume of 0.6...
Air in a rigid tank is at 140 kPa, 300 K with a volume of 0.6 m3. The tank is heated to 400 K. Now one side of the tank acts as a piston letting the air expand slowly at constant temperature process to state 3 with a volume of 1.4 m3. The total heat transfer is.
Carbon dioxide (CO2) is compressed in a piston–cylinder assembly from p1 = 0.7 bar, T1 =...
Carbon dioxide (CO2) is compressed in a piston–cylinder assembly from p1 = 0.7 bar, T1 = 280 K to p2 = 14 bar. The initial volume is 0.2 m3. The process is described by pV1.25 = constant. Assuming ideal gas behavior and neglecting kinetic and potential energy effects, determine the work and heat transfer for the process, each in kJ, using constant specific heats evaluated at 300 K, and data from Table A-23.
Water vapor is cooled in a closed, rigid tank from T1 = 360°C and p1 =...
Water vapor is cooled in a closed, rigid tank from T1 = 360°C and p1 = 100 bar to a final temperature of T2 = 320°C. Determine the final specific volume, v2, in m3/kg, and the final pressure, p2, in bar.
Water vapor is cooled in a closed, rigid tank from T1 = 400°C and p1 =...
Water vapor is cooled in a closed, rigid tank from T1 = 400°C and p1 = 100 bar to a final temperature of T2 = 320°C. Determine the final specific volume, v2, in m3/kg, and the final pressure, p2, in bar.
Initially (state 1) a well-insulated rigid tank contains 20 kg of a saturated liquid-vapor mixture of...
Initially (state 1) a well-insulated rigid tank contains 20 kg of a saturated liquid-vapor mixture of water at 100 kPa and half of the mass is in the liquid phase. An electric resistance heater placed in the tank is now turned on and kept on until all the liquid in the tank is vaporized (state 2). Determine (a) the initial specific volume in m3/kg, (b) the final specific entropy in kJ/kg.K and (c) change of entropy in kJ/K.
Initially (state 1) a well-insulated rigid tank contains 20 kg of a saturated liquid-vapor mixture of...
Initially (state 1) a well-insulated rigid tank contains 20 kg of a saturated liquid-vapor mixture of water at 100 kPa and half of the mass is in the liquid phase. An electric resistance heater placed in the tank is now turned on and kept on until all the liquid in the tank is vaporized (state 2). Determine (a) the initial specific volume in m3/kg, (b) the final specific entropy in kJ/kg.K and (c) change of entropy in kJ/K.
A closed, rigid, 0.40 m3 tank is filled with 12 kg of water. The initial pressure...
A closed, rigid, 0.40 m3 tank is filled with 12 kg of water. The initial pressure is p1 = 20 bar. The water is cooled until the pressure is p2= 4 bar. Determine the initial quality, x1, and the heat transfer, in kJ.