Question

A piston cylinder device contains 0.15 kg of air initially at 2 MPa and 350 C....

A piston cylinder device contains 0.15 kg of air initially at 2 MPa and 350 C. First, the air expands isothermally to a pressure of 500 kPa. Then, it is compressed polytropically back to the initial pressure (2 MPa) with a polytropic exponent of 1.2. Find the work performed or introduced by or to the air for each process. Express it both times in kJ.

Homework Answers

Answer #1

solution:-

this is the complete solution,if you like please upvote me.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100...
A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100 kPa pressure. The gas is now compressed to a final temperature of 95oC at 250 kPa. This compression is polytropic and follows PVn=constant. a. Determine how much boundary work was added to the gas [in kJ] b. How much heat was added or removed from this system during this process? [in kJ]
Three kilograms of nitrogen gas at 27 °C, 0.15 MPa are compressed isothermally to 0.3 MPa...
Three kilograms of nitrogen gas at 27 °C, 0.15 MPa are compressed isothermally to 0.3 MPa in a piston-cylinder device. Determine the minimum work of compression, in kJ.
A piston-cylinder device with a set of stops initially contains 0.35 kg of steam at 1.0...
A piston-cylinder device with a set of stops initially contains 0.35 kg of steam at 1.0 MPa and 900 degrees C. The location of the stops corresponds to 44 percent of the initial volume. Now the steam is cooled. Determine the magnitude of the compression work if the final state is (A) 1.0 MPa and 600 degrees C and W=. kJ (B) 500 kPa. W=. kJ (C) Also determine the temperature at the final state in part (B). T2=. C
An insulated piston–cylinder device initially contains 20 L of air at 140 kPa and 27 °C....
An insulated piston–cylinder device initially contains 20 L of air at 140 kPa and 27 °C. Air is now heated for 10 min by a 100-W resistance heater placed inside the cylinder. The pressure of air is maintained constant during this process, and the surroundings are at 27 °C and 100 kPa. Determine the exergy destroyed during this process.
A piston-cylinder device contains 0.9 kg of steam at 350⁰C and 1.4 MPa. Steam is cooled...
A piston-cylinder device contains 0.9 kg of steam at 350⁰C and 1.4 MPa. Steam is cooled at constant pressure until one-half of the mass condenses. (a) show the process on a T-v and P-v diagrams, (b) find the final temperature and (c) determine the volume and entalphy changes.
In a cylinder/piston arrangement, air is compressed in a reversible polytropic process to a final state...
In a cylinder/piston arrangement, air is compressed in a reversible polytropic process to a final state of 800 kPa, 500 K. Initially air is at 110 kPa and 25oC. During the compression process heat transfer takes place with the ambient maintained at 25oC. Assume air as an ideal gas (R =0.287 kJ/kg) and has constant specific heats of Cp = 1.004 kJ/kgK and Cv = 0.717 kJ/kgK. If the mass of air in the cylinder is 0.1286 kg, determine a)...
A piston-cylinder device contains 3.2 kg of air at 400 kPa and 10°C. Heat is transfered...
A piston-cylinder device contains 3.2 kg of air at 400 kPa and 10°C. Heat is transfered to air and the piston is allowed to expand at constant pressure until its temperature reaches 50°C. The work done during this expansion process is: Use kj units
A piston - cylinder device, whose piston is resting on a set of stops, initially contains...
A piston - cylinder device, whose piston is resting on a set of stops, initially contains 2 kg of air at 300 kPa and 27 degree C. The mass of the piston is such that a pressure of 600 kPa is required to move it. Heat is now transferred to the air until its volume doubles. a) Show the process on p - V and p - T diagrams. b) Determine the work done by the air. c) Determine the...
a plunger cylinder device contains 0.8 kg of water at 4 Mpa and 500 ° C,...
a plunger cylinder device contains 0.8 kg of water at 4 Mpa and 500 ° C, it begins to lose heat causing the piston to descend to a set of stops inside the cylinder, at which point saturated steam is obtained through an isobaric process. Cooling continues until the cylinder contains water at 1 atm pressure. The heat transferred during this process is kJ
Air in a closed piston cylinder device is initially at 800 K and at 250 kPa....
Air in a closed piston cylinder device is initially at 800 K and at 250 kPa. The air undergoes a process until it is at 2200 K and at 750 kPa. What is the change in the air's specific entropy during this process (kJ/kgK)?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT