Question

1. A thick metal plate (alpha = 3.5 x 10-6 m2/s and k = 0.7 W/m-K),...

1. A thick metal plate (alpha = 3.5 x 10-6 m2/s and k = 0.7 W/m-K), initially at a uniform temperature of 100oC, is suddenly exposed to a convection environment of water at 20oC, giving a very large convection coefficient.

a. Sketch the surface heat flux, q", as a function of time

b. Using an explicit numerical scheme with a time step of 60 s, calculate the time required for the temperature to change 80 mm from the surface.

Homework Answers

Answer #1

some data were missing in the question but by knowing these values we can put them into the equation i written in the solution and can know the exact answer.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
71 mm thick horizontal plate made of an opaque material of thermal conductivity k= 25 W/m-K....
71 mm thick horizontal plate made of an opaque material of thermal conductivity k= 25 W/m-K. At the bottom, water flows at a temperature of T∞,w = 25C, whereas air flows at the top of the plate at T∞,a = 710 C having convection coefficient of ha= 71 W/m2-K. Assuming a diffused top of the plate that receives an irradiated flux of 7100W/m2, of which 30% is reflected back. The top and bottom surface temperatures are maintained at 43 C...
The 7-mm-thick base plate of an iron is made of an aluminum alloy (? = 2,700...
The 7-mm-thick base plate of an iron is made of an aluminum alloy (? = 2,700 kgm-3; c = 950 Jkg-1K-1; k = 200 Wm-1K-1; ? = 0.8), and has outer surface area of 0.04 m2, perimeter of 0.7 m, and maximum length of 0.3 m. An electrical resistance heater applies a uniform heat flux of 12.5 kWm-2 to the inner surface of the base plate when the iron is turned on. The outer surface of the base plate is...
One surface of a thick aluminum block (α = 97.1 × 10−6 m2/s, k= 237 W/m...
One surface of a thick aluminum block (α = 97.1 × 10−6 m2/s, k= 237 W/m K) initially at 20°C is subjected to an energy pulse of 5000 kJ/m2. Determine the temperature (in oC to the nearest degree) at a depth of 5 cm from the surface of the block 15 seconds after the pulse
4-23 After heat treatment, the 2-cm thick metal plates (k = 180 W/m·K, ρ = 2800...
4-23 After heat treatment, the 2-cm thick metal plates (k = 180 W/m·K, ρ = 2800 kg/m3, and cp = 880 J/kg·K) are conveyed through a cooling chamber with a length of 10 m. The plates enter the cooling chamber at an initial temperature of 500°C. The cooling chamber maintains a temperature of 10°C, and the convection heat transfer coefficient is given as a function of the air velocity blowing over the plates h = 33V0.8, where h is in...
After heat treatment, the 2-cm thick metal plates (k = 180 W/m·K, ρ = 2800 kg/m3,...
After heat treatment, the 2-cm thick metal plates (k = 180 W/m·K, ρ = 2800 kg/m3, and cp = 880 J/kg·K) are conveyed through a cooling chamber with a length of 10 m. The plates enter the cooling chamber at an initial temperature of 500°C. The cooling chamber maintains a temperature of 10°C, and the convection heat transfer coefficient is given as a function of the air velocity blowing over the plates h = 33V0.8, where h is in W/m2·K...
Homework-9 Due: Q) A fuel plate is fabricated from 0.3 cm thick 1.5% enriched uranium. The...
Homework-9 Due: Q) A fuel plate is fabricated from 0.3 cm thick 1.5% enriched uranium. The cladding is 0.25 mm 304 stainless steel. The coolant saturation temperature is 260 oC. The average thermal neutron flux is 2.5 X 1014 neutrons/cm2 /s. The surface temperature of the clad is 350 oC. Assume any missing data to answer the following questions:. 1) Write an expression of the heat generated per unit volume 2 What is the heat flux at the surface of...
1. An oven chimney is made of brick with a heat transmission coefficient 1.1 W/mK 10...
1. An oven chimney is made of brick with a heat transmission coefficient 1.1 W/mK 10 cm thick. Since the shaft exterior radiation beam coefficient is 0.8 and the flue gas temperature is 350°C, the external ambient temperature is 25°C and the outer ambient heat transport coefficient is 20 W/m2K; a) Calculate the shaft exterior temperature. b) In order to reduce the risk of burn injury that may occur in the body, the shaft is asked to be below 55°Cve...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT