Question

Air is heated by exhaust gases that flow in a heat exchanger, as shown in the...

Air is heated by exhaust gases that flow in a heat exchanger, as shown in the figure. The
heat gained by the air is measured as 320 kW and the inlet air temperature is 20°C.
Exhaust gases inlet state is 527°C, 822 kJ/kg, 64 m/s while the exit state is 327°C, 607
kJ/kg, 78 m/s. If the flow rate of air is 10kg/s, determine the flow rate of exhaust gases
and the exit temperature of air. [Cp-air = 1.005 kJ/kg °C]

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A turbojet aircraft is flying with a velocity of 320 m/s at a certain altitude, where...
A turbojet aircraft is flying with a velocity of 320 m/s at a certain altitude, where the ambient conditions are 32 kPa and -32°C. The pressure ratio across the compressor is 12, and the temperature at the turbine inlet is 1400K. Air enters the compressor at a rate of 40 kg/s, and the and the jet fuel has a heating value of 42700 kJ/kg. Assuming ideal operations for all components and constant specific heats for air at room temperature, (Cp=1.005...
A thin-walled double pipe counter flow heat exchanger is to be used to cool oil (cp...
A thin-walled double pipe counter flow heat exchanger is to be used to cool oil (cp = 2200 j/kg*K) from 150 ℃ to 30 ℃ at a rate of 2.1 kg/s by water (cp= 4180 J/kg*K) that enters at 20 ℃ at a rate of 1.2 kg/s. The diameter of the tube is 2.5 cm, and its length is 10 m. Using Excel (a) Determine the overall heat transfer coefficient of this heat exchanger. (b) Investigate the effects of oil...
a tube-within-a-tube heat exchanger operating at steady state is composed of one pipe containing Refrigerant 134a...
a tube-within-a-tube heat exchanger operating at steady state is composed of one pipe containing Refrigerant 134a and another pipe containing an ideal gas with constant specific heat at constant pressure of 1.2 kJ/(kg∙K). The refrigerant 134a enters the heat exchanger in a saturated liquid state and exits the heat exchanger in a saturated vapor state. The temperature and mass flow rate of the refrigerant 134a are -20° C and 3 kgs/s, respectively, at both its inlet and outlet. The ideal...
1) Water is heated by steam in a heat exchanger. The water comes in at .4...
1) Water is heated by steam in a heat exchanger. The water comes in at .4 MPa and 10°C and leaves at 110°C. flow rate of the water is 2 kg/s. 0.5 kg of steam comes in at a pressure of 0.6 MPa at 300°C, determine the exit temperature and state of the steam and rate of condensation if any
Milk enters a heat exchanger at 200C and is heated to 750C using hot water at...
Milk enters a heat exchanger at 200C and is heated to 750C using hot water at a temperature of 900C. 1) If exit temperature of water is 800C, assume parallel flow and determine the log mean temperature difference between water and milk.   2) assume countercurrent flow and determine the log mean temperature difference between water and milk. 3)assume countercurrent flow and determine the overall heat transfer coefficient of heat exchanger (based on inside diameter). Assume specific heat of water as...
Cold water enters a counter flow heat exchanger at 20ºC at a rate of 10 kg/s,...
Cold water enters a counter flow heat exchanger at 20ºC at a rate of 10 kg/s, where it is heated by a hot water stream that enters the heat exchanger at 80ºC at a rate of 2 kg/s. Assuming the specific heat of water to remain constant at Cp=4.18 kJ/(kg.ºC), determine the maximum heat transfer rate and the outlet temperatures of the cold and the hot water streams.
Increasing the temperature of the heat addition (T subscript H) in any heat engine cycle, with...
Increasing the temperature of the heat addition (T subscript H) in any heat engine cycle, with keeping all other parameters unchanged: A. None of the answers. B. Decreases the heat added at high temperature. C. Increases the thermal efficiency of the cycle. D. Decreases the thermal efficiency of the cycle. 1 points    QUESTION 2 The maximum thermal efficiency of the Rankine cycle power plant is achieved when: A. it works on Carnot heat engine cycle. B. the pump work...
Consider the turbocharger of an internal combustion engine. The exhaust gases enter the turbine at 450...
Consider the turbocharger of an internal combustion engine. The exhaust gases enter the turbine at 450 °C at a rate of 0.02 kg/s and leave at 400 °C. Air enters the compressor at 70 °C and 95 kPa at a rate of 0.018 kg/s and leaves at 135 kPa. The mechanical efficiency between the turbine and the compressor is 95 percent (5 percent of turbine work is lost during its transmission to the compressor). Using air properties for the exhaust...
A heat recovery unit in a factory uses a shell-in-tube counter flow type unit to recover...
A heat recovery unit in a factory uses a shell-in-tube counter flow type unit to recover heat from a flow of hot fluid to preheat water for the factory. The hot fluid enters at 88°C and a flow rate of 25 kg/minute, and exits at 55°C. The cold water will enter the heat exchanger at 15°C and exit at 55°C. Take cHot-fluid = 3000 J/kg.K, cwater = 4200 J/kg.K. PART (b) An air to water heat exchanger with an effectiveness...
A thin-walled cross-flow heat exchanger is used to heat a petrochemical whose specific heat is 1800...
A thin-walled cross-flow heat exchanger is used to heat a petrochemical whose specific heat is 1800 J (kg K)-1 with hot water (Cp = 4180 J (kg K)-1). The petrochemical enters the heat exchanger at 20oC at a rate of 3.7 kg s-1, whilst the water stream enters at 110oC at a rate of 2.5 kg s-1. The heat transfer surface area of the heat exchanger is 4.8 m2 and the overall heat transfer coefficient is 940.30 W m-2K-1. Determine...