Question

A rigid, insulated vessel is divided into two compartments connected by a valve. Initially, one compartment,...

A rigid, insulated vessel is divided into two compartments connected by a valve. Initially, one compartment, occupying 1.0 ft3, contains air at 50 lbf/in2, 725oR, and the other, occupying 2.0 ft3, is evacuated. The valve is opened and the air is allowed to fill both volumes. Assume the air behaves as an ideal gas and that the final state is in equilibrium. Determine the final temperature of the air, in oR, and the amount of entropy produced, in Btu/oR.

Determine the amount of entropy produced, in Btu/oR PLEASE

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A rigid, insulated vessel is divided into two compartments connected by a valve. Initially, one compartment,...
A rigid, insulated vessel is divided into two compartments connected by a valve. Initially, one compartment, occupying 1.0 ft3, contains air at 50 lbf/in2, 500oR, and the other, occupying 2.0 ft3, is evacuated. The valve is opened and the air is allowed to fill both volumes. Assume the air behaves as an ideal gas and that the final state is in equilibrium.   Determine the final temperature of the air, in oR, and the amount of entropy produced, in Btu/oR.
A rigid, insulated tank that is initially evacuated is connected through a valve to a supply...
A rigid, insulated tank that is initially evacuated is connected through a valve to a supply line that carries steam at 1 MPa and 300°C. Now the valve is opened,and steam is allowed to flow slowly into the tank until the pressure reaches 1 MPa, at which point the valve is closed. Find the rate of entropy production.
A rigid and thermally insulated tank is divided into compartments of equal volume V separated by...
A rigid and thermally insulated tank is divided into compartments of equal volume V separated by thin membrane . one compartment contains one type of ideal gas and other contains another type of ideal they are chemically inert when they mix when the membrane ruptures The change in entropy of the gases mixing is ??????
A thermally insulated container is divided by a partition into two compartments, the right compartment having...
A thermally insulated container is divided by a partition into two compartments, the right compartment having a volume 4 times as large as the left compartment. The left compartment contains 2 moles of an ideal gas A at 25 °C and 0.8 atm. The right compartment contains 2 molesof an ideal gas B at 25 °C. The partition is removed and gases are mixed. Calculate the entropy change in the mixing process.
A rigid, insulated container is divided into three equal compartments and contains an ideal gas. All...
A rigid, insulated container is divided into three equal compartments and contains an ideal gas. All are at a constant temperature of 25 deg C. Compartment 1 is at a pressure of 1 bar, Compartment 2 is at a pressure of 2 bars and Compartment 3 is at a pressure of 6 bars. The partitions between compartments are removed suddenly and the gas is allowed to reach equilibrium pressure in the container. What will be temperature and pressure reached? Explain...
The insulated vessel shown below has two compartments separated by a membrane. On one side is...
The insulated vessel shown below has two compartments separated by a membrane. On one side is 1 kg of steam at 400°C and 200 bar. The other side is evacuated. The membrane ruptures, filling the entire volume. The final pressure is 100 bar. Determine the entropy change for this process. (In each state of your calculations, state your reasoning clearly.)
Sixty pounds of carbon dioxide gas are contained in a 100-ft3 rigid, insulated vessel initially at...
Sixty pounds of carbon dioxide gas are contained in a 100-ft3 rigid, insulated vessel initially at 4 atm. An electric resistor of negligible mass transfers energy to the gas at a constant rate of 12 Btu/s for 40 seconds. Use the ideal gas model and ignore the effects of motion and gravity. Let To = 70°F, po = 1 atm. -Determine the change in exergy of the gas, in Btu.
Two insulated containers are connected through an insulated line and a valve that is closed. Both...
Two insulated containers are connected through an insulated line and a valve that is closed. Both sides contain 1 kg of steam but the left side is at 300 °C while the right side is at 200 °C. The valve is opened, allowing both sides to mix and reach a common temperature and pressure. a) Is this process reversible? b) What is the final pressure and temperature of the steam, if the steam is treated as an ideal gas? c)...
A rigid insulated tank is divided into two parts, one that contains 1 kg of steam...
A rigid insulated tank is divided into two parts, one that contains 1 kg of steam at 10 bar, 200 °C, and one that contains 1 kg of steam at 20 bar, 800 °C. The partition that separates the two compartments is removed and the system is allowed to reach equilibrium. What is the entropy generation?
3. One mole of CO is initially contained on one-half of a well-insulated, rigid tank. Its...
3. One mole of CO is initially contained on one-half of a well-insulated, rigid tank. Its temperature is 500K. The other half of the tank is initially at vacuum. A diaphragm separates the two compartments. Each compartment has a volume of 1L. Suddenly, the diaphragm ruptures. Use the van der Waals equation for any non-ideal behavior. Answer the following questions: (a) What is Cv,m at the initial state? (b) Do you expect the temperature to increase, decrease, or remain constant....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT