Question

A stainless-steel fin (k = 16 W/m. °C) has a length of 15 cm and a...

A stainless-steel fin (k = 16 W/m. °C) has a length of 15 cm and a square cross section 12.5 by 12.5 mm attached to a wall maintained at 250 °C. The heat-transfer coefficient is 40 W/m. °C, and the environment temperature is 90 °C. Calculate the percentage increase in heat transfer after attaching the fin.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider an aluminum pin fin (k = 240 W/m·K) with a 2 mm by 2 mm...
Consider an aluminum pin fin (k = 240 W/m·K) with a 2 mm by 2 mm square cross-section and a length of 4 cm that is attached to a surface at 100o C. The fin is exposed to air at 25o C with a convection heat transfer coefficient of 20 W/m2 · o C. Determine the rate of heat transfer and the tip temperature of the fin for the following cases: (a) Convection from the fin tip. (b) Adiabatic tip...
An aluminum fin 1.6 mm thick surrounds a tube 2.5 cm in diameter. The length of...
An aluminum fin 1.6 mm thick surrounds a tube 2.5 cm in diameter. The length of the fin is 12.5 mm. The tube-wall temperature is 200◦C, and the environment temperature is 20◦C. The heat-transfer coefficient is 60 W/m2 · ◦C. Consider the heat dissipated in a pipe 1.20 m long if the fins are 4.2 mm apart from center to center Explain your procedure with formulas
It's a heat transfer question. A stainless steel fin with a constant base temperature (900K) and...
It's a heat transfer question. A stainless steel fin with a constant base temperature (900K) and with an insulated end. Apply convection at all cylindrical surfaces except the base and the tip. The convection coefficient, h = 50 W/(m2·K), and fluid temperature of T∞ = 300K. Plot the temperature distribution along the center axis line (T vs x). Include a contour plot across the cross section of the fin. Assume zero contact resistance between the sections. K=19.8W/m-k Cp=557J/Kg-K Rho= 7900Kg/m^3...
Annular steel fins (k=56.7W/m· K) are attached to a steel tube that is 30mm in external...
Annular steel fins (k=56.7W/m· K) are attached to a steel tube that is 30mm in external diameter. The fins are 2mm thick and 15mm long. The tube wall temperature is 350K and the surrounding fluid temperature is 450K with a heat-transfer coefficient of 75W/m2 · K. There are 200 fins per meter of tube length. Calculate: (a) The fin efficiency. (b) The fin surface area per meter of tube length. (c) The prime surface area per meter of the tube...
A fin of rectangular profile has a thermal conductivity of 14 W/m C, thickness of 2.0...
A fin of rectangular profile has a thermal conductivity of 14 W/m C, thickness of 2.0 mm, and length of 23 mm. The base of the fin is maintained at a temperature of 220 o C while the fin is exposed to a convection environment at 23 o C with h=25 W/m2 o C. Calculate heat lost per meter of fin depth for the three tip conditions. (a) Convection, (b) Adiabatic, and (c) T (x=L) = 23 o C.
A long 10 cm × 20 cm rectangular cross section steel bar ݇ k= 63.9 W/mK...
A long 10 cm × 20 cm rectangular cross section steel bar ݇ k= 63.9 W/mK and alpha=18.8*10^-6 m^2 /s was heated to an initial temperature of 450°C. The steel bar is allowed to cool in a room with a temperature of 25°C and convection heat transfer coefficient of 25 W/m^2 K. The bottom surface of the bar is insulated while the other surfaces are exposed to convection. With a uniform nodal spacing of 5 cm, determine the duration required...
A pin fin, fabricated from an aluminum alloy (k = 185 W/m K), has a diameter...
A pin fin, fabricated from an aluminum alloy (k = 185 W/m K), has a diameter of D = 3 mm and a length of L = 15 mm. Its base temperature is Tb = 100°C, and it is exposed to a fluid for which T∞ = 20°C and h = 50 W/m2 K. Provide a sketch and state your assumptions (1 point) Use Table 3.5 in the book (grading is based on the use of that particular table) to...
A house has a composite wall of wood (exterior) (k = 0.12 W m-1 K -1...
A house has a composite wall of wood (exterior) (k = 0.12 W m-1 K -1 , 20 mm thick), fibreglass insulation (k = 0.045 W m-1 K -1 , 70 mm thick) and plasterboard (interior) (k = 0.25 W m-1 K -1 , 10 mm thick). Determine the total heat loss through the wall when the inside temperature is 20 °C, the outside temperature is -10 °C, the inside heat transfer coefficient is 15 W m-2 K -1 ,...
2.1Consider a solid cylindrical rod of length 0.15 m and diameter 0.05 m. The top and...
2.1Consider a solid cylindrical rod of length 0.15 m and diameter 0.05 m. The top and bottom surfaces of the rod are maintained at constant temperatures of 20oC and 95oC, respectively, while the side surface is perfectly insulated. 2.1.1 Draw a diagram to represent the situation described above. (3) 2.1.2 Determine the rate of heat transfer through the rod if it is made of copper, k = 380 W/m? oC. (4) 2.1.3 Determine the rate of heat transfer through the...
The extent to which the tip condition affects the thermal performance of a fin depends on...
The extent to which the tip condition affects the thermal performance of a fin depends on the fin geometry and thermal conductivity, as well as the convection coefficient. Consider an alloyed aluminum (k = 180 W/m*K) rectangular fin of length L = 10 mm, thickness t = 1 mm, and width w >> t. The base temperature of the fin is Tb = 100°C, and the fin is exposed to a fluid of temperature T∞ = 25°C. Assuming a uniform...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT