Question

In a Dual cycle the heat transfer during the constant volume process is double that during...

  1. In a Dual cycle the heat transfer during the constant volume process is double that during the constant pressure process. The compression ratio is 14 and the air initial conditions are 1 bar and 27oC. If the maximum pressure in the cycle is 60 bar, calculate:

    1. Maximum temperature

    2. Heat added at constant volume and constant pressure per kg of air

    3. Cycle thermal efficiency

    4. Net work per kg of air

    5. Exergy destroyed associated with the cycle. Assume the source temperature to be the same

      temperature as the maximum cycle temperature, and the sink temperature to be the same as

      minimum cycle temperature.

    6. Sketch the cycle on P-v and T-s diagrams

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In an ideal standard dual cycle, the pressure and temperature at the beginning of compression are...
In an ideal standard dual cycle, the pressure and temperature at the beginning of compression are 1 bar and 47°C, respectively. The heat supplied in the cycle is 1250kJ/kg, two third of this heat is being added at constant volume and the remaining heat is added at constant pressure. If the compression ratio is 16, determine 1)the maximum temperature in the cycle. 2)the thermal efficiency of the cycle. 3)the mean effective pressure.
An air-standard dual cycle has the following elements: compression ratio = 8.0 1600 kJ/kg heat addition...
An air-standard dual cycle has the following elements: compression ratio = 8.0 1600 kJ/kg heat addition so that 30% occurs at constant volume and 70% occurs at constant pressure The state is 300K and 1 bar at the beginning of the compression process Find:   (a) the temperatures at the end of each heat addition process (b) the cycle efficiency (c) the MEP
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar...
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar and T1 = 300 K. The compression ratio is 6 and the heat addition per unit mass of air is 1500 kJ/kg. Determine: (a) the maximum temperature of the cycle, in K. (b) the net work, in kJ/kg. (c) the percent thermal efficiency of the cycle. (d) the mean effective pressure, in kPa.
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected 2) An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected. 11)An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the pressure...
1a. An air-standard cycle consists of the following processes: isentropic compression from 15 ?C, 1.01 bar...
1a. An air-standard cycle consists of the following processes: isentropic compression from 15 ?C, 1.01 bar through a compression ratio of 5:1; heat addition at constant volume of 2600 kJ/kg; isentropic expansion to the initial volume; heat rejection at constant volume. Sketch the cycle on p-v and T-s diagrams, and calculate its ideal efficiency, mean effective pressure and peak pressure. Answers(0.475, 18.9 bar, 73.0 bar) b. The cycle is problem (a) is modified so that the heat is added (a)...
The compression ratio of an engine is 10 and the temperature and pressure at the start...
The compression ratio of an engine is 10 and the temperature and pressure at the start of compression is 370 Celcius degree and 1 bar. The compression and expansion processes are both isentropic and the heat rejected at exhaust at constant volume. The amount of heat added during the cycle is 3000 kJ/kg. Determine the mean effective pressure and thermal efficiency of the cycle if the maximum pressure is limited to 70 bar and heat added at both constant volume...
Consider an ideal Ericsson cycle with air as the working fluid executed in a steady-flow system....
Consider an ideal Ericsson cycle with air as the working fluid executed in a steady-flow system. Air is at 27°C and 110 kPa at the beginning of the isothermal compression process, during which 150 kJ/kg of heat is rejected. Heat transfer to air occurs at 950 K. The gas constant of air is R = 0.287 kJ/kg·K. a.)The maximum pressure in the cycle is? kPa b.)The net work output per unit mass of air is? kJ/kg c.)The thermal efficiency of...
The compression ratio in an air-standard Otto cycle is 8. At the beginning of the compression...
The compression ratio in an air-standard Otto cycle is 8. At the beginning of the compression stroke the pressure is 14.7 lbf/in2 and the temperature is 600F. The heat transfer to the air during the combustion process per cycle is 800 Btu/lbm. Determine: (a) The pressure and temperature at the end of each process of the cycle. (b) The thermal efficiency (use k = 1.4, Cv = 0.171 Btu/lbm 0F).
The compression ratio in an air-standard Otto cycle is 8. At the beginning of the compression...
The compression ratio in an air-standard Otto cycle is 8. At the beginning of the compression stroke the pressure is 14.7 lbf/in2 and the temperature is 600F. The heat transfer to the air during the combustion process per cycle is 800 Btu/lbm. Determine: (a) The pressure and temperature at the end of each process of the cycle. (b) The thermal efficiency (use k = 1.4, Cv = 0.171 Btu/lbm 0F).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT