Question

8. Using the Mollier diagram, determine final steam pressure, in psia, if steam goes from 100...

8. Using the Mollier diagram, determine final steam pressure, in psia, if steam goes from 100 psia and 500 oF to 550 oF at constant enthalpy.

State your answer in whole numbers. Example: 187

14. An ideal Rankine cycle operates without superheat (wet cycle) as shown in the following T-s diagram. If saturated steam is expanded from 300 psia to steam with 5 % moisture, use the Mollier diagram to determine the turbine outlet pressure, in psia.

State your answer to one decimal place. Example: 16.7

I WILL RATE YOU

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
10. Steam expands isentropically from 200 psia and 50 oF superheat to 15 % moisture. Determine...
10. Steam expands isentropically from 200 psia and 50 oF superheat to 15 % moisture. Determine the final steam pressure, in psia, using the Mollier diagram. State your answer to one decimal place. Example: 18.0
A Rankine cycle operates with turbine inlet conditions of 600 psia and 600 degrees F. The...
A Rankine cycle operates with turbine inlet conditions of 600 psia and 600 degrees F. The steam is expanded through the turbine to a final exhaust pressure of 10 psia. What is the work done by the turbine, in BTU/lbm? State your answer to the nearest whole number. Example: 123
A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and...
A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and 6 psia in the condenser. The turbine inlet temperature is 800°F. The turbine isentropic efficiency is 90 percent, the pump losses are negligible, and the cycle is sized to produce 2500 kW of power. How much error is caused in the thermal efficiency if the power required by the pump were completely neglected? Use steam tables. The error caused in the thermal efficiency if...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has a pressure ratio of 7. Air enters the compressor at 15 ºC at a rate of 10 kg/s and the gas turbine at 950 ºC. The bottoming cycle is a reheat Rankine cycle between the pressure limits of 6 MPa and 10 kPa. Steam is heated in a heat exchanger at a rate of 1.15 kg/s by the exhaust gases leaving the gas turbine,...
A steam power plant of 15 MW operates on the simple ideal Rankine cycle such that...
A steam power plant of 15 MW operates on the simple ideal Rankine cycle such that the water leaves the condenser as a saturated liquid at a pressure of 15 kPa. The pressure of the water leaving the pump is 5.0 MPa, and the temperature of the steam entering the turbine is 650 ºC. (a) Show the sketch and cycle on a T-s diagram. Determine (b) the thermal efficiency of the cycle and (c) the mass flow rate in kg/s....
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 7.5 kPa. Determine the quality of the steam at the turbine exit. Use steam tables. (You must provide an answer before moving on to the next part.) a.)The quality of the steam at the turbine exit is? b.)Determine the thermal efficiency of the cycle.The thermal efficiency of...
Steam enters the turbine of an ideal Rankine cycle power plant with a pressure of 12.5...
Steam enters the turbine of an ideal Rankine cycle power plant with a pressure of 12.5 MPa and a temperature of 600°C and expands adiabatically to condenser pressure equal to 30 kPa . Please answer the following: a. Represent the cycle on a T-s diagram, indicate the values of the isobars and temperature and entropy on the axes. b. Compute the thermal efficiency for this cycle.
A steam power plant operates on the simple ideal rankine cycle between the pressure limits of...
A steam power plant operates on the simple ideal rankine cycle between the pressure limits of 50 kPa and 20 MPa, with a turbine inlet temperature of 600 Degree C. Disregarding the pump work, then: (a) Show the T-S diagram of the entire cycle. (b) Solve the total heat (kJ/kg) input for the cycle. (c) Solve the total heat (kJ/kg) reject by the cycle. (d) Solve the thermal efficiency of this plant.
A fired boiler is used to produce thirty thousand lbm/hr of saturated (vapor) steam at 200...
A fired boiler is used to produce thirty thousand lbm/hr of saturated (vapor) steam at 200 psia, from liquid water which enters at 70 degrees F. Natural gas (assume pure methane) is used for fuel with 10% excess air. Assuming complete combustion, with exhaust flue gas leaving at 500 degrees F, and constant Cp values (evaluated at room temperature), determine: a) the new power that can be produced in a Rankine cycle given the following conditions: * Turbine and pump...
A power plant using an ideal Rankine power generation cycle operates at an efficiency of 55%...
A power plant using an ideal Rankine power generation cycle operates at an efficiency of 55% with a flowrate of steam of 2 kg/s.  Heat is supplied to the boiler of 2500 kJ/kg. The pump takes in saturated liquid water at 100 kPa and has an exit pressure of 10 MPa.  Determine: the exit temperature of the pump (oC)  (3 pts) the work of the turbine (kW) (3 pts) the heat exhausted from the condenser (kJ/s) (3 pts)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT