Question

Air expands in a polytropic process (n = 1.35) from 2 MPa and 1200 K to...

Air expands in a polytropic process (n = 1.35) from 2 MPa and 1200 K to 150 kPa in a piston/cylinder.   Determine per unit mass of air the work produced and the heat transferred during the expansion process in kJ/kg.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a cylinder/piston arrangement, air is compressed in a reversible polytropic process to a final state...
In a cylinder/piston arrangement, air is compressed in a reversible polytropic process to a final state of 800 kPa, 500 K. Initially air is at 110 kPa and 25oC. During the compression process heat transfer takes place with the ambient maintained at 25oC. Assume air as an ideal gas (R =0.287 kJ/kg) and has constant specific heats of Cp = 1.004 kJ/kgK and Cv = 0.717 kJ/kgK. If the mass of air in the cylinder is 0.1286 kg, determine a)...
Air at 1,373 K, 977 kPa expands in a polytropic process, n = 1.4, to a...
Air at 1,373 K, 977 kPa expands in a polytropic process, n = 1.4, to a final pressure of 218 kPa. Determine the specific entropy generation for this process, if the surroundings are maintained at 300 K. Provide your answer with 2 decimal places. b) any equations used in variable form, and with numbers and units c) v1, where "v" represents specific volume d) v2, where "v" represents specific volume e) P2 f)T2 g) 1w2 f) 1q2 g) change in...
A piston cylinder device contains 0.15 kg of air initially at 2 MPa and 350 C....
A piston cylinder device contains 0.15 kg of air initially at 2 MPa and 350 C. First, the air expands isothermally to a pressure of 500 kPa. Then, it is compressed polytropically back to the initial pressure (2 MPa) with a polytropic exponent of 1.2. Find the work performed or introduced by or to the air for each process. Express it both times in kJ.
Air in a piston-cylinder device undergoes an isobaric expansion process from 280 K and 245 kPa...
Air in a piston-cylinder device undergoes an isobaric expansion process from 280 K and 245 kPa to 880 K. This is achieved by adding heat to the system under quasi-equilibrium conditions. What is the work done by the air during this process? (Use the appropriate sign convention.) What is the amount of heat transferred for this process? (Use the appropriate sign convention.) Considering the actual variation in the specific heat of air during the process, what is the change in...
A 0.2 m3 piston-cylinder initially contains 400 K air. A heavy frictionless piston maintains a pressure...
A 0.2 m3 piston-cylinder initially contains 400 K air. A heavy frictionless piston maintains a pressure of 500 kPa abs. Then, a weakness in the cylinder wall blows out and creates a hole. Air escapes through the hole until the piston drops far enough to cover the hole. At that point, the volume is half the initial volume. During this process, 75 kJ of heat is transferred to the 100 kPa, 300 K surroundings. Using Cp = 1.005 kJ/kg-K and...
Two kilograms of air undergo a polytropic process (n = 1.3) from 600 K and 200...
Two kilograms of air undergo a polytropic process (n = 1.3) from 600 K and 200 kPa to 900 K. Considering the system and surroundings as an isolated system, find the entropy change of the air and the entropy production. Answers: -0.1938 kJ/K, 0.284 (Engineering Thermodynamics)
1. An engine operating at a hot-air standard (k=1.35) Dual Combustion Cycle handles air at 100kPa,...
1. An engine operating at a hot-air standard (k=1.35) Dual Combustion Cycle handles air at 100kPa, 34.5°C, & 0.3531m^3 during the beginning of the isentropic compression process. The engine has a percent clearance of 6.25% and an expansion ratio of 1.5 during the isentropic expansion process. It receives 165 kJ of heat during the constant volume process. What is the a.) Temperatures at different points of the cycle °C? b.) Net Work kJ? And c.) Mean effective pressure in kPa?
0.5 kilograms of air are compressed from 100 kPa and 300 K in a polytropic process,...
0.5 kilograms of air are compressed from 100 kPa and 300 K in a polytropic process, n = 1.3, to a state where V2 = 0.5 V1. The air is further compressed at constant pressure until the final volume is 0.2 V1 . Draw a sketch of the processes on a p-V diagram. Determine the work for each process.
A piston-cylinder device contains 3.2 kg of air at 400 kPa and 10°C. Heat is transfered...
A piston-cylinder device contains 3.2 kg of air at 400 kPa and 10°C. Heat is transfered to air and the piston is allowed to expand at constant pressure until its temperature reaches 50°C. The work done during this expansion process is: Use kj units
A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100...
A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100 kPa pressure. The gas is now compressed to a final temperature of 95oC at 250 kPa. This compression is polytropic and follows PVn=constant. a. Determine how much boundary work was added to the gas [in kJ] b. How much heat was added or removed from this system during this process? [in kJ]
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT