Question

Steam enters an adiabatic turbine at 140 bar and 560 C and leaves at 10 kPa....

Steam enters an adiabatic turbine at 140 bar and 560 C and leaves at 10 kPa. At the exit, the pressure and quality are 50 KPa and .90, respectively. Determine the power produced (kW) by the turbine if the mass flow rate is 1.63 kg/s.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Steam enters an adiabatic turbine at 1 MPa and 400 °C and leaves at 150 kPa...
Steam enters an adiabatic turbine at 1 MPa and 400 °C and leaves at 150 kPa with a quality of 80 percent. Neglecting the changes in kinetic and potential energies, determine the mass flow rate required for a power output of 10 MW
Question 5 Steam enters an adiabatic turbine at 10 MPa and 500°C and leaves at 10...
Question 5 Steam enters an adiabatic turbine at 10 MPa and 500°C and leaves at 10 kPa with a quality of 90 percent. Neglecting the changes in kinetic and potential energies, determine the mass flow rate required for a power output of 5 MW
NO INTERPOLATION REQUIRED Air enters an adiabatic turbine at 1000 kPa and 1625 degrees C (state...
NO INTERPOLATION REQUIRED Air enters an adiabatic turbine at 1000 kPa and 1625 degrees C (state 1) with a mass flow rate of 5 kg/s and leaves at 100 kPa the isentropic efficiency of the turbine is 85%. Neglecting the kinetic energy change of the steam, and considering variable specific heats, determine: a. the isentropic power of the turbine Isentropic power in kW b. the temperature at the turbine exit temperature at exit in degrees C c. the actual power...
Steam enters an adiabatic turbine at 7 MPa, 700 °C and 80 m/s and leaves at...
Steam enters an adiabatic turbine at 7 MPa, 700 °C and 80 m/s and leaves at 50 kPa, 150 °C, and 140 m/s. If the power output of the turbine is 6 MW, determine: i)          Mass flowrate of the steam flowing through the turbine.                                      ii)        The isentropic efficiency of the turbine.
Steam enters an adiabatic turbine at 5 MPa and 700°C at a rate of 18.6 kg/s....
Steam enters an adiabatic turbine at 5 MPa and 700°C at a rate of 18.6 kg/s. The steam leaves the turbine at 50 kPa and 200°C. What is the rate of work produced by the turbine in MW? What is the rate of change of entropy of the steam during this process in kW/K? If the turbine is reversible and adiabatic and the steam leaves at 50 kPa, what is the rate of work produced by this turbine in MW?...
Consider an adiabatic turbine. At steady mass flow rate of 10 kg/s, steam enter the turbine...
Consider an adiabatic turbine. At steady mass flow rate of 10 kg/s, steam enter the turbine at 4.5 MPa, 600°c and 85 m/s and leaves the turbine at 40 kPa, quality of 0.8 and 50 m/s. Determine : a) the power output b) the turbine inlet area
Thermodynamics If you get a number from a table can you please show me a picture...
Thermodynamics If you get a number from a table can you please show me a picture of where you got it from because that's what i'm mainly confused about. 1. Steam enters an insulated turbine at 100 bar, 400oC. At the exit, the pressure and quality are 200 kPa and 0.54, respectively. Determine the power produced (kW) by the turbine if the mass flow rate is 2.09 kg/s. (ans= 2,931.8) 2. Steam enters a turbine at 8000 kPa, 440oC. At...
Steam goes through an adiabatic turbine at 2 kg/s. The power created by the turbine is...
Steam goes through an adiabatic turbine at 2 kg/s. The power created by the turbine is 1523.5 kW. Determine the isentropic efficiency of the turbine. Entrance conditions: 3 MPa and 400°C Exit conditions: 30 kPa
Steam goes through an adiabatic turbine at 2 kg/s. The power created by the turbine is...
Steam goes through an adiabatic turbine at 2 kg/s. The power created by the turbine is 1523.5 kW. Determine the isentropic efficiency of the turbine. Entrance conditions: 3 MPa and 400°C Exit conditions: 30 kPa
A turbine accepts steam at 4000kPa and 500oC and leaves at 100 kPa with a quality...
A turbine accepts steam at 4000kPa and 500oC and leaves at 100 kPa with a quality of 20%. If the mass flow rate is 6 kg/s determine the power output. (Neglect kinetic & potential energy changes. Neglect heat loss.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT